Description: Lemma for isthincd2 . (Contributed by Zhi Wang, 17-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isthincd2lem2.1 | |
|
isthincd2lem2.2 | |
||
isthincd2lem2.3 | |
||
isthincd2lem2.4 | |
||
isthincd2lem2.5 | |
||
isthincd2lem2.6 | |
||
Assertion | isthincd2lem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isthincd2lem2.1 | |
|
2 | isthincd2lem2.2 | |
|
3 | isthincd2lem2.3 | |
|
4 | isthincd2lem2.4 | |
|
5 | isthincd2lem2.5 | |
|
6 | isthincd2lem2.6 | |
|
7 | oveq1 | |
|
8 | opeq1 | |
|
9 | 8 | oveq1d | |
10 | 9 | oveqd | |
11 | oveq1 | |
|
12 | 10 11 | eleq12d | |
13 | 12 | ralbidv | |
14 | 7 13 | raleqbidv | |
15 | oveq2 | |
|
16 | oveq1 | |
|
17 | opeq2 | |
|
18 | 17 | oveq1d | |
19 | 18 | oveqd | |
20 | 19 | eleq1d | |
21 | 16 20 | raleqbidv | |
22 | 15 21 | raleqbidv | |
23 | oveq2 | |
|
24 | oveq2 | |
|
25 | 24 | oveqd | |
26 | oveq2 | |
|
27 | 25 26 | eleq12d | |
28 | 23 27 | raleqbidv | |
29 | 28 | ralbidv | |
30 | oveq2 | |
|
31 | 30 | eleq1d | |
32 | oveq1 | |
|
33 | 32 | eleq1d | |
34 | 31 33 | cbvral2vw | |
35 | 29 34 | bitrdi | |
36 | 14 22 35 | cbvral3vw | |
37 | 6 36 | sylib | |
38 | oveq1 | |
|
39 | opeq1 | |
|
40 | 39 | oveq1d | |
41 | 40 | oveqd | |
42 | oveq1 | |
|
43 | 41 42 | eleq12d | |
44 | 43 | ralbidv | |
45 | 38 44 | raleqbidv | |
46 | oveq2 | |
|
47 | oveq1 | |
|
48 | opeq2 | |
|
49 | 48 | oveq1d | |
50 | 49 | oveqd | |
51 | 50 | eleq1d | |
52 | 47 51 | raleqbidv | |
53 | 46 52 | raleqbidv | |
54 | oveq2 | |
|
55 | oveq2 | |
|
56 | 55 | oveqd | |
57 | oveq2 | |
|
58 | 56 57 | eleq12d | |
59 | 54 58 | raleqbidv | |
60 | 59 | ralbidv | |
61 | 45 53 60 | rspc3v | |
62 | 1 2 3 61 | syl3anc | |
63 | 37 62 | mpd | |
64 | oveq2 | |
|
65 | 64 | eleq1d | |
66 | oveq1 | |
|
67 | 66 | eleq1d | |
68 | 65 67 | rspc2v | |
69 | 4 5 68 | syl2anc | |
70 | 63 69 | mpd | |