Metamath Proof Explorer


Theorem isthincd2lem2

Description: Lemma for isthincd2 . (Contributed by Zhi Wang, 17-Sep-2024)

Ref Expression
Hypotheses isthincd2lem2.1 φXB
isthincd2lem2.2 φYB
isthincd2lem2.3 φZB
isthincd2lem2.4 φFXHY
isthincd2lem2.5 φGYHZ
isthincd2lem2.6 φxByBzBfxHygyHzgxy·˙zfxHz
Assertion isthincd2lem2 φGXY·˙ZFXHZ

Proof

Step Hyp Ref Expression
1 isthincd2lem2.1 φXB
2 isthincd2lem2.2 φYB
3 isthincd2lem2.3 φZB
4 isthincd2lem2.4 φFXHY
5 isthincd2lem2.5 φGYHZ
6 isthincd2lem2.6 φxByBzBfxHygyHzgxy·˙zfxHz
7 oveq1 x=wxHy=wHy
8 opeq1 x=wxy=wy
9 8 oveq1d x=wxy·˙z=wy·˙z
10 9 oveqd x=wgxy·˙zf=gwy·˙zf
11 oveq1 x=wxHz=wHz
12 10 11 eleq12d x=wgxy·˙zfxHzgwy·˙zfwHz
13 12 ralbidv x=wgyHzgxy·˙zfxHzgyHzgwy·˙zfwHz
14 7 13 raleqbidv x=wfxHygyHzgxy·˙zfxHzfwHygyHzgwy·˙zfwHz
15 oveq2 y=vwHy=wHv
16 oveq1 y=vyHz=vHz
17 opeq2 y=vwy=wv
18 17 oveq1d y=vwy·˙z=wv·˙z
19 18 oveqd y=vgwy·˙zf=gwv·˙zf
20 19 eleq1d y=vgwy·˙zfwHzgwv·˙zfwHz
21 16 20 raleqbidv y=vgyHzgwy·˙zfwHzgvHzgwv·˙zfwHz
22 15 21 raleqbidv y=vfwHygyHzgwy·˙zfwHzfwHvgvHzgwv·˙zfwHz
23 oveq2 z=uvHz=vHu
24 oveq2 z=uwv·˙z=wv·˙u
25 24 oveqd z=ugwv·˙zf=gwv·˙uf
26 oveq2 z=uwHz=wHu
27 25 26 eleq12d z=ugwv·˙zfwHzgwv·˙ufwHu
28 23 27 raleqbidv z=ugvHzgwv·˙zfwHzgvHugwv·˙ufwHu
29 28 ralbidv z=ufwHvgvHzgwv·˙zfwHzfwHvgvHugwv·˙ufwHu
30 oveq2 f=kgwv·˙uf=gwv·˙uk
31 30 eleq1d f=kgwv·˙ufwHugwv·˙ukwHu
32 oveq1 g=lgwv·˙uk=lwv·˙uk
33 32 eleq1d g=lgwv·˙ukwHulwv·˙ukwHu
34 31 33 cbvral2vw fwHvgvHugwv·˙ufwHukwHvlvHulwv·˙ukwHu
35 29 34 bitrdi z=ufwHvgvHzgwv·˙zfwHzkwHvlvHulwv·˙ukwHu
36 14 22 35 cbvral3vw xByBzBfxHygyHzgxy·˙zfxHzwBvBuBkwHvlvHulwv·˙ukwHu
37 6 36 sylib φwBvBuBkwHvlvHulwv·˙ukwHu
38 oveq1 w=XwHv=XHv
39 opeq1 w=Xwv=Xv
40 39 oveq1d w=Xwv·˙u=Xv·˙u
41 40 oveqd w=Xlwv·˙uk=lXv·˙uk
42 oveq1 w=XwHu=XHu
43 41 42 eleq12d w=Xlwv·˙ukwHulXv·˙ukXHu
44 43 ralbidv w=XlvHulwv·˙ukwHulvHulXv·˙ukXHu
45 38 44 raleqbidv w=XkwHvlvHulwv·˙ukwHukXHvlvHulXv·˙ukXHu
46 oveq2 v=YXHv=XHY
47 oveq1 v=YvHu=YHu
48 opeq2 v=YXv=XY
49 48 oveq1d v=YXv·˙u=XY·˙u
50 49 oveqd v=YlXv·˙uk=lXY·˙uk
51 50 eleq1d v=YlXv·˙ukXHulXY·˙ukXHu
52 47 51 raleqbidv v=YlvHulXv·˙ukXHulYHulXY·˙ukXHu
53 46 52 raleqbidv v=YkXHvlvHulXv·˙ukXHukXHYlYHulXY·˙ukXHu
54 oveq2 u=ZYHu=YHZ
55 oveq2 u=ZXY·˙u=XY·˙Z
56 55 oveqd u=ZlXY·˙uk=lXY·˙Zk
57 oveq2 u=ZXHu=XHZ
58 56 57 eleq12d u=ZlXY·˙ukXHulXY·˙ZkXHZ
59 54 58 raleqbidv u=ZlYHulXY·˙ukXHulYHZlXY·˙ZkXHZ
60 59 ralbidv u=ZkXHYlYHulXY·˙ukXHukXHYlYHZlXY·˙ZkXHZ
61 45 53 60 rspc3v XBYBZBwBvBuBkwHvlvHulwv·˙ukwHukXHYlYHZlXY·˙ZkXHZ
62 1 2 3 61 syl3anc φwBvBuBkwHvlvHulwv·˙ukwHukXHYlYHZlXY·˙ZkXHZ
63 37 62 mpd φkXHYlYHZlXY·˙ZkXHZ
64 oveq2 k=FlXY·˙Zk=lXY·˙ZF
65 64 eleq1d k=FlXY·˙ZkXHZlXY·˙ZFXHZ
66 oveq1 l=GlXY·˙ZF=GXY·˙ZF
67 66 eleq1d l=GlXY·˙ZFXHZGXY·˙ZFXHZ
68 65 67 rspc2v FXHYGYHZkXHYlYHZlXY·˙ZkXHZGXY·˙ZFXHZ
69 4 5 68 syl2anc φkXHYlYHZlXY·˙ZkXHZGXY·˙ZFXHZ
70 63 69 mpd φGXY·˙ZFXHZ