Metamath Proof Explorer


Theorem isubgr3stgrlem3

Description: Lemma 3 for isubgr3stgr . (Contributed by AV, 17-Sep-2025)

Ref Expression
Hypotheses isubgr3stgr.v V = Vtx G
isubgr3stgr.u U = G NeighbVtx X
isubgr3stgr.c C = G ClNeighbVtx X
isubgr3stgr.n N 0
isubgr3stgr.s No typesetting found for |- S = ( StarGr ` N ) with typecode |-
isubgr3stgr.w W = Vtx S
Assertion isubgr3stgrlem3 G USGraph X V U = N g g : C 1-1 onto W g X = 0

Proof

Step Hyp Ref Expression
1 isubgr3stgr.v V = Vtx G
2 isubgr3stgr.u U = G NeighbVtx X
3 isubgr3stgr.c C = G ClNeighbVtx X
4 isubgr3stgr.n N 0
5 isubgr3stgr.s Could not format S = ( StarGr ` N ) : No typesetting found for |- S = ( StarGr ` N ) with typecode |-
6 isubgr3stgr.w W = Vtx S
7 1 2 3 4 5 6 isubgr3stgrlem2 G USGraph X V U = N f f : U 1-1 onto W 0
8 f1odm f : U 1-1 onto W 0 dom f = U
9 simpr G USGraph X V U = N f : U 1-1 onto W 0 f : U 1-1 onto W 0
10 simpl2 G USGraph X V U = N f : U 1-1 onto W 0 X V
11 c0ex 0 V
12 11 a1i G USGraph X V U = N f : U 1-1 onto W 0 0 V
13 neldifsnd G USGraph X V U = N f : U 1-1 onto W 0 ¬ 0 W 0
14 df-nel 0 W 0 ¬ 0 W 0
15 13 14 sylibr G USGraph X V U = N f : U 1-1 onto W 0 0 W 0
16 eqid f X 0 = f X 0
17 1 2 3 16 isubgr3stgrlem1 f : U 1-1 onto W 0 X V 0 V 0 W 0 f X 0 : C 1-1 onto W 0 0
18 9 10 12 15 17 syl112anc G USGraph X V U = N f : U 1-1 onto W 0 f X 0 : C 1-1 onto W 0 0
19 18 ex G USGraph X V U = N f : U 1-1 onto W 0 f X 0 : C 1-1 onto W 0 0
20 f1of f X 0 : C 1-1 onto W 0 0 f X 0 : C W 0 0
21 20 3ad2ant2 G USGraph X V U = N f X 0 : C 1-1 onto W 0 0 dom f = U f X 0 : C W 0 0
22 3 ovexi C V
23 22 a1i G USGraph X V U = N f X 0 : C 1-1 onto W 0 0 dom f = U C V
24 21 23 fexd G USGraph X V U = N f X 0 : C 1-1 onto W 0 0 dom f = U f X 0 V
25 5 6 stgrvtx0 N 0 0 W
26 4 25 mp1i G USGraph X V U = N 0 W
27 26 snssd G USGraph X V U = N 0 W
28 undifr 0 W W 0 0 = W
29 27 28 sylib G USGraph X V U = N W 0 0 = W
30 29 f1oeq3d G USGraph X V U = N f X 0 : C 1-1 onto W 0 0 f X 0 : C 1-1 onto W
31 30 biimpa G USGraph X V U = N f X 0 : C 1-1 onto W 0 0 f X 0 : C 1-1 onto W
32 31 3adant3 G USGraph X V U = N f X 0 : C 1-1 onto W 0 0 dom f = U f X 0 : C 1-1 onto W
33 simp12 G USGraph X V U = N f X 0 : C 1-1 onto W 0 0 dom f = U X V
34 11 a1i G USGraph X V U = N f X 0 : C 1-1 onto W 0 0 dom f = U 0 V
35 nbgrnself2 X G NeighbVtx X
36 df-nel X G NeighbVtx X ¬ X G NeighbVtx X
37 2 eleq2i X U X G NeighbVtx X
38 36 37 xchbinxr X G NeighbVtx X ¬ X U
39 35 38 mpbi ¬ X U
40 eleq2 dom f = U X dom f X U
41 40 notbid dom f = U ¬ X dom f ¬ X U
42 41 3ad2ant3 G USGraph X V U = N f X 0 : C 1-1 onto W 0 0 dom f = U ¬ X dom f ¬ X U
43 39 42 mpbiri G USGraph X V U = N f X 0 : C 1-1 onto W 0 0 dom f = U ¬ X dom f
44 fsnunfv X V 0 V ¬ X dom f f X 0 X = 0
45 33 34 43 44 syl3anc G USGraph X V U = N f X 0 : C 1-1 onto W 0 0 dom f = U f X 0 X = 0
46 32 45 jca G USGraph X V U = N f X 0 : C 1-1 onto W 0 0 dom f = U f X 0 : C 1-1 onto W f X 0 X = 0
47 f1oeq1 g = f X 0 g : C 1-1 onto W f X 0 : C 1-1 onto W
48 fveq1 g = f X 0 g X = f X 0 X
49 48 eqeq1d g = f X 0 g X = 0 f X 0 X = 0
50 47 49 anbi12d g = f X 0 g : C 1-1 onto W g X = 0 f X 0 : C 1-1 onto W f X 0 X = 0
51 24 46 50 spcedv G USGraph X V U = N f X 0 : C 1-1 onto W 0 0 dom f = U g g : C 1-1 onto W g X = 0
52 51 3exp G USGraph X V U = N f X 0 : C 1-1 onto W 0 0 dom f = U g g : C 1-1 onto W g X = 0
53 19 52 syld G USGraph X V U = N f : U 1-1 onto W 0 dom f = U g g : C 1-1 onto W g X = 0
54 8 53 mpdi G USGraph X V U = N f : U 1-1 onto W 0 g g : C 1-1 onto W g X = 0
55 54 exlimdv G USGraph X V U = N f f : U 1-1 onto W 0 g g : C 1-1 onto W g X = 0
56 7 55 mpd G USGraph X V U = N g g : C 1-1 onto W g X = 0