Metamath Proof Explorer


Theorem itg2le

Description: If one function dominates another, then the integral of the larger is also larger. (Contributed by Mario Carneiro, 28-Jun-2014)

Ref Expression
Assertion itg2le F:0+∞G:0+∞FfG2F2G

Proof

Step Hyp Ref Expression
1 reex V
2 1 a1i F:0+∞G:0+∞hdom1V
3 i1ff hdom1h:
4 3 adantl F:0+∞G:0+∞hdom1h:
5 ressxr *
6 fss h:*h:*
7 4 5 6 sylancl F:0+∞G:0+∞hdom1h:*
8 simpll F:0+∞G:0+∞hdom1F:0+∞
9 iccssxr 0+∞*
10 fss F:0+∞0+∞*F:*
11 8 9 10 sylancl F:0+∞G:0+∞hdom1F:*
12 simplr F:0+∞G:0+∞hdom1G:0+∞
13 fss G:0+∞0+∞*G:*
14 12 9 13 sylancl F:0+∞G:0+∞hdom1G:*
15 xrletr x*y*z*xyyzxz
16 15 adantl F:0+∞G:0+∞hdom1x*y*z*xyyzxz
17 2 7 11 14 16 caoftrn F:0+∞G:0+∞hdom1hfFFfGhfG
18 simplr F:0+∞G:0+∞hdom1hfGG:0+∞
19 simprl F:0+∞G:0+∞hdom1hfGhdom1
20 simprr F:0+∞G:0+∞hdom1hfGhfG
21 itg2ub G:0+∞hdom1hfG1h2G
22 18 19 20 21 syl3anc F:0+∞G:0+∞hdom1hfG1h2G
23 22 expr F:0+∞G:0+∞hdom1hfG1h2G
24 17 23 syld F:0+∞G:0+∞hdom1hfFFfG1h2G
25 24 ancomsd F:0+∞G:0+∞hdom1FfGhfF1h2G
26 25 exp4b F:0+∞G:0+∞hdom1FfGhfF1h2G
27 26 com23 F:0+∞G:0+∞FfGhdom1hfF1h2G
28 27 3impia F:0+∞G:0+∞FfGhdom1hfF1h2G
29 28 ralrimiv F:0+∞G:0+∞FfGhdom1hfF1h2G
30 simp1 F:0+∞G:0+∞FfGF:0+∞
31 itg2cl G:0+∞2G*
32 31 3ad2ant2 F:0+∞G:0+∞FfG2G*
33 itg2leub F:0+∞2G*2F2Ghdom1hfF1h2G
34 30 32 33 syl2anc F:0+∞G:0+∞FfG2F2Ghdom1hfF1h2G
35 29 34 mpbird F:0+∞G:0+∞FfG2F2G