Description: If one function dominates another, then the integral of the larger is also larger. (Contributed by Mario Carneiro, 28-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | itg2le | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reex | |
|
2 | 1 | a1i | |
3 | i1ff | |
|
4 | 3 | adantl | |
5 | ressxr | |
|
6 | fss | |
|
7 | 4 5 6 | sylancl | |
8 | simpll | |
|
9 | iccssxr | |
|
10 | fss | |
|
11 | 8 9 10 | sylancl | |
12 | simplr | |
|
13 | fss | |
|
14 | 12 9 13 | sylancl | |
15 | xrletr | |
|
16 | 15 | adantl | |
17 | 2 7 11 14 16 | caoftrn | |
18 | simplr | |
|
19 | simprl | |
|
20 | simprr | |
|
21 | itg2ub | |
|
22 | 18 19 20 21 | syl3anc | |
23 | 22 | expr | |
24 | 17 23 | syld | |
25 | 24 | ancomsd | |
26 | 25 | exp4b | |
27 | 26 | com23 | |
28 | 27 | 3impia | |
29 | 28 | ralrimiv | |
30 | simp1 | |
|
31 | itg2cl | |
|
32 | 31 | 3ad2ant2 | |
33 | itg2leub | |
|
34 | 30 32 33 | syl2anc | |
35 | 29 34 | mpbird | |