Metamath Proof Explorer


Theorem ituniiun

Description: Unwrap an iterated union from the "other end". (Contributed by Stefan O'Rear, 11-Feb-2015)

Ref Expression
Hypothesis ituni.u U=xVrecyVyxω
Assertion ituniiun AVUAsucB=aAUaB

Proof

Step Hyp Ref Expression
1 ituni.u U=xVrecyVyxω
2 fveq2 b=AUb=UA
3 2 fveq1d b=AUbsucB=UAsucB
4 iuneq1 b=AabUaB=aAUaB
5 3 4 eqeq12d b=AUbsucB=abUaBUAsucB=aAUaB
6 suceq d=sucd=suc
7 6 fveq2d d=Ubsucd=Ubsuc
8 fveq2 d=Uad=Ua
9 8 iuneq2d d=abUad=abUa
10 7 9 eqeq12d d=Ubsucd=abUadUbsuc=abUa
11 suceq d=csucd=succ
12 11 fveq2d d=cUbsucd=Ubsucc
13 fveq2 d=cUad=Uac
14 13 iuneq2d d=cabUad=abUac
15 12 14 eqeq12d d=cUbsucd=abUadUbsucc=abUac
16 suceq d=succsucd=sucsucc
17 16 fveq2d d=succUbsucd=Ubsucsucc
18 fveq2 d=succUad=Uasucc
19 18 iuneq2d d=succabUad=abUasucc
20 17 19 eqeq12d d=succUbsucd=abUadUbsucsucc=abUasucc
21 suceq d=Bsucd=sucB
22 21 fveq2d d=BUbsucd=UbsucB
23 fveq2 d=BUad=UaB
24 23 iuneq2d d=BabUad=abUaB
25 22 24 eqeq12d d=BUbsucd=abUadUbsucB=abUaB
26 uniiun b=aba
27 1 itunisuc Ubsuc=Ub
28 1 ituni0 bVUb=b
29 28 elv Ub=b
30 29 unieqi Ub=b
31 27 30 eqtri Ubsuc=b
32 1 ituni0 abUa=a
33 32 iuneq2i abUa=aba
34 26 31 33 3eqtr4i Ubsuc=abUa
35 1 itunisuc Ubsucsucc=Ubsucc
36 unieq Ubsucc=abUacUbsucc=abUac
37 1 itunisuc Uasucc=Uac
38 37 a1i abUasucc=Uac
39 38 iuneq2i abUasucc=abUac
40 iuncom4 abUac=abUac
41 39 40 eqtr2i abUac=abUasucc
42 36 41 eqtrdi Ubsucc=abUacUbsucc=abUasucc
43 35 42 eqtrid Ubsucc=abUacUbsucsucc=abUasucc
44 43 a1i cωUbsucc=abUacUbsucsucc=abUasucc
45 10 15 20 25 34 44 finds BωUbsucB=abUaB
46 iun0 ab=
47 46 eqcomi =ab
48 peano2b BωsucBω
49 vex bV
50 1 itunifn bVUbFnω
51 fndm UbFnωdomUb=ω
52 49 50 51 mp2b domUb=ω
53 52 eleq2i sucBdomUbsucBω
54 48 53 bitr4i BωsucBdomUb
55 ndmfv ¬sucBdomUbUbsucB=
56 54 55 sylnbi ¬BωUbsucB=
57 vex aV
58 1 itunifn aVUaFnω
59 fndm UaFnωdomUa=ω
60 57 58 59 mp2b domUa=ω
61 60 eleq2i BdomUaBω
62 ndmfv ¬BdomUaUaB=
63 61 62 sylnbir ¬BωUaB=
64 63 iuneq2d ¬BωabUaB=ab
65 47 56 64 3eqtr4a ¬BωUbsucB=abUaB
66 45 65 pm2.61i UbsucB=abUaB
67 5 66 vtoclg AVUAsucB=aAUaB