| Step |
Hyp |
Ref |
Expression |
| 1 |
|
brdom2 |
|
| 2 |
|
nnenom |
|
| 3 |
|
sdomentr |
|
| 4 |
2 3
|
mpan2 |
|
| 5 |
|
isfinite |
|
| 6 |
|
finiunmbl |
|
| 7 |
6
|
ex |
|
| 8 |
5 7
|
sylbir |
|
| 9 |
4 8
|
syl |
|
| 10 |
|
bren |
|
| 11 |
|
nfv |
|
| 12 |
|
nfcv |
|
| 13 |
|
nfcsb1v |
|
| 14 |
13
|
nfcri |
|
| 15 |
12 14
|
nfrexw |
|
| 16 |
|
f1of |
|
| 17 |
16
|
ffvelcdmda |
|
| 18 |
17
|
3adant3 |
|
| 19 |
|
simp3 |
|
| 20 |
|
f1ocnvfv1 |
|
| 21 |
20
|
3adant3 |
|
| 22 |
21
|
eqcomd |
|
| 23 |
|
csbeq1a |
|
| 24 |
22 23
|
syl |
|
| 25 |
19 24
|
eleqtrd |
|
| 26 |
|
fveq2 |
|
| 27 |
26
|
csbeq1d |
|
| 28 |
27
|
eleq2d |
|
| 29 |
28
|
rspcev |
|
| 30 |
18 25 29
|
syl2anc |
|
| 31 |
30
|
3exp |
|
| 32 |
11 15 31
|
rexlimd |
|
| 33 |
|
f1ocnvdm |
|
| 34 |
|
csbeq1a |
|
| 35 |
34
|
eleq2d |
|
| 36 |
14 35
|
rspce |
|
| 37 |
36
|
ex |
|
| 38 |
33 37
|
syl |
|
| 39 |
38
|
rexlimdva |
|
| 40 |
32 39
|
impbid |
|
| 41 |
|
eliun |
|
| 42 |
|
eliun |
|
| 43 |
40 41 42
|
3bitr4g |
|
| 44 |
43
|
eqrdv |
|
| 45 |
44
|
adantr |
|
| 46 |
|
rspcsbela |
|
| 47 |
33 46
|
sylan |
|
| 48 |
47
|
an32s |
|
| 49 |
48
|
ralrimiva |
|
| 50 |
|
iunmbl |
|
| 51 |
49 50
|
syl |
|
| 52 |
45 51
|
eqeltrd |
|
| 53 |
52
|
ex |
|
| 54 |
53
|
exlimiv |
|
| 55 |
10 54
|
sylbi |
|
| 56 |
9 55
|
jaoi |
|
| 57 |
1 56
|
sylbi |
|
| 58 |
57
|
imp |
|