Description: Lemma for sseqp1 . (Contributed by Thierry Arnoux, 25-Apr-2019) (Proof shortened by AV, 14-Oct-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | iwrdsplit.s | |
|
iwrdsplit.f | |
||
iwrdsplit.n | |
||
Assertion | iwrdsplit | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iwrdsplit.s | |
|
2 | iwrdsplit.f | |
|
3 | iwrdsplit.n | |
|
4 | 1nn0 | |
|
5 | 4 | a1i | |
6 | 3 5 | nn0addcld | |
7 | 1 2 6 | subiwrd | |
8 | 1re | |
|
9 | nn0addge2 | |
|
10 | 8 3 9 | sylancr | |
11 | 1 2 6 | subiwrdlen | |
12 | 10 11 | breqtrrd | |
13 | wrdlenge1n0 | |
|
14 | 7 13 | syl | |
15 | 12 14 | mpbird | |
16 | pfxlswccat | |
|
17 | 7 15 16 | syl2anc | |
18 | 3 | nn0cnd | |
19 | 1cnd | |
|
20 | 18 19 11 | mvrraddd | |
21 | 20 | oveq2d | |
22 | nn0fz0 | |
|
23 | 3 22 | sylib | |
24 | elfz0add | |
|
25 | 24 | imp | |
26 | 3 5 23 25 | syl21anc | |
27 | 11 | oveq2d | |
28 | 26 27 | eleqtrrd | |
29 | pfxres | |
|
30 | 7 28 29 | syl2anc | |
31 | fzossfzop1 | |
|
32 | resabs1 | |
|
33 | 3 31 32 | 3syl | |
34 | 21 30 33 | 3eqtrd | |
35 | lsw | |
|
36 | 7 35 | syl | |
37 | 20 | fveq2d | |
38 | fzonn0p1 | |
|
39 | fvres | |
|
40 | 3 38 39 | 3syl | |
41 | 36 37 40 | 3eqtrd | |
42 | 41 | s1eqd | |
43 | 34 42 | oveq12d | |
44 | 17 43 | eqtr3d | |