Metamath Proof Explorer


Theorem iwrdsplit

Description: Lemma for sseqp1 . (Contributed by Thierry Arnoux, 25-Apr-2019) (Proof shortened by AV, 14-Oct-2022)

Ref Expression
Hypotheses iwrdsplit.s φSV
iwrdsplit.f φF:0S
iwrdsplit.n φN0
Assertion iwrdsplit φF0..^N+1=F0..^N++⟨“FN”⟩

Proof

Step Hyp Ref Expression
1 iwrdsplit.s φSV
2 iwrdsplit.f φF:0S
3 iwrdsplit.n φN0
4 1nn0 10
5 4 a1i φ10
6 3 5 nn0addcld φN+10
7 1 2 6 subiwrd φF0..^N+1WordS
8 1re 1
9 nn0addge2 1N01N+1
10 8 3 9 sylancr φ1N+1
11 1 2 6 subiwrdlen φF0..^N+1=N+1
12 10 11 breqtrrd φ1F0..^N+1
13 wrdlenge1n0 F0..^N+1WordSF0..^N+11F0..^N+1
14 7 13 syl φF0..^N+11F0..^N+1
15 12 14 mpbird φF0..^N+1
16 pfxlswccat F0..^N+1WordSF0..^N+1F0..^N+1prefixF0..^N+11++⟨“lastSF0..^N+1”⟩=F0..^N+1
17 7 15 16 syl2anc φF0..^N+1prefixF0..^N+11++⟨“lastSF0..^N+1”⟩=F0..^N+1
18 3 nn0cnd φN
19 1cnd φ1
20 18 19 11 mvrraddd φF0..^N+11=N
21 20 oveq2d φF0..^N+1prefixF0..^N+11=F0..^N+1prefixN
22 nn0fz0 N0N0N
23 3 22 sylib φN0N
24 elfz0add N010N0NN0N+1
25 24 imp N010N0NN0N+1
26 3 5 23 25 syl21anc φN0N+1
27 11 oveq2d φ0F0..^N+1=0N+1
28 26 27 eleqtrrd φN0F0..^N+1
29 pfxres F0..^N+1WordSN0F0..^N+1F0..^N+1prefixN=F0..^N+10..^N
30 7 28 29 syl2anc φF0..^N+1prefixN=F0..^N+10..^N
31 fzossfzop1 N00..^N0..^N+1
32 resabs1 0..^N0..^N+1F0..^N+10..^N=F0..^N
33 3 31 32 3syl φF0..^N+10..^N=F0..^N
34 21 30 33 3eqtrd φF0..^N+1prefixF0..^N+11=F0..^N
35 lsw F0..^N+1WordSlastSF0..^N+1=F0..^N+1F0..^N+11
36 7 35 syl φlastSF0..^N+1=F0..^N+1F0..^N+11
37 20 fveq2d φF0..^N+1F0..^N+11=F0..^N+1N
38 fzonn0p1 N0N0..^N+1
39 fvres N0..^N+1F0..^N+1N=FN
40 3 38 39 3syl φF0..^N+1N=FN
41 36 37 40 3eqtrd φlastSF0..^N+1=FN
42 41 s1eqd φ⟨“lastSF0..^N+1”⟩=⟨“FN”⟩
43 34 42 oveq12d φF0..^N+1prefixF0..^N+11++⟨“lastSF0..^N+1”⟩=F0..^N++⟨“FN”⟩
44 17 43 eqtr3d φF0..^N+1=F0..^N++⟨“FN”⟩