Description: A Cartesian product of finite sets such that all but finitely many are singletons is finite. (Note that B ( x ) and D ( x ) are both possibly dependent on x .) (Contributed by Mario Carneiro, 25-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ixpfi2.1 | |
|
ixpfi2.2 | |
||
ixpfi2.3 | |
||
Assertion | ixpfi2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ixpfi2.1 | |
|
2 | ixpfi2.2 | |
|
3 | ixpfi2.3 | |
|
4 | inss2 | |
|
5 | ssfi | |
|
6 | 1 4 5 | sylancl | |
7 | inss1 | |
|
8 | 2 | ralrimiva | |
9 | ssralv | |
|
10 | 7 8 9 | mpsyl | |
11 | ixpfi | |
|
12 | 6 10 11 | syl2anc | |
13 | resixp | |
|
14 | 7 13 | mpan | |
15 | 14 | a1i | |
16 | simprl | |
|
17 | vex | |
|
18 | 17 | elixp | |
19 | 16 18 | sylib | |
20 | 19 | simprd | |
21 | simprr | |
|
22 | vex | |
|
23 | 22 | elixp | |
24 | 21 23 | sylib | |
25 | 24 | simprd | |
26 | r19.26 | |
|
27 | difss | |
|
28 | ssralv | |
|
29 | 27 28 | ax-mp | |
30 | 3 | sseld | |
31 | elsni | |
|
32 | 30 31 | syl6 | |
33 | 3 | sseld | |
34 | elsni | |
|
35 | 33 34 | syl6 | |
36 | 32 35 | anim12d | |
37 | eqtr3 | |
|
38 | 36 37 | syl6 | |
39 | 38 | ralimdva | |
40 | 39 | adantr | |
41 | 29 40 | syl5 | |
42 | 26 41 | biimtrrid | |
43 | 20 25 42 | mp2and | |
44 | 43 | biantrud | |
45 | fvres | |
|
46 | fvres | |
|
47 | 45 46 | eqeq12d | |
48 | 47 | ralbiia | |
49 | inundif | |
|
50 | 49 | raleqi | |
51 | ralunb | |
|
52 | 50 51 | bitr3i | |
53 | 44 48 52 | 3bitr4g | |
54 | 19 | simpld | |
55 | fnssres | |
|
56 | 54 7 55 | sylancl | |
57 | 24 | simpld | |
58 | fnssres | |
|
59 | 57 7 58 | sylancl | |
60 | eqfnfv | |
|
61 | 56 59 60 | syl2anc | |
62 | eqfnfv | |
|
63 | 54 57 62 | syl2anc | |
64 | 53 61 63 | 3bitr4d | |
65 | 64 | ex | |
66 | 15 65 | dom2lem | |
67 | f1fi | |
|
68 | 12 66 67 | syl2anc | |