Metamath Proof Explorer


Theorem jm2.19lem1

Description: Lemma for jm2.19 . X and Y values are coprime. (Contributed by Stefan O'Rear, 23-Sep-2014)

Ref Expression
Assertion jm2.19lem1 A2MAXrmMgcdAYrmM=1

Proof

Step Hyp Ref Expression
1 frmx Xrm:2×0
2 1 fovcl A2MAXrmM0
3 2 nn0cnd A2MAXrmM
4 3 sqcld A2MAXrmM2
5 rmspecnonsq A2A21
6 5 eldifad A2A21
7 6 adantr A2MA21
8 7 nncnd A2MA21
9 frmy Yrm:2×
10 9 fovcl A2MAYrmM
11 10 zcnd A2MAYrmM
12 11 sqcld A2MAYrmM2
13 8 12 mulcld A2MA21AYrmM2
14 4 13 negsubd A2MAXrmM2+A21AYrmM2=AXrmM2A21AYrmM2
15 3 sqvald A2MAXrmM2=AXrmMAXrmM
16 11 sqvald A2MAYrmM2=AYrmMAYrmM
17 16 oveq2d A2MA21AYrmM2=A21AYrmMAYrmM
18 8 12 mulneg1d A2MA21AYrmM2=A21AYrmM2
19 nnnegz A21A21
20 7 19 syl A2MA21
21 20 zcnd A2MA21
22 21 11 11 mul12d A2MA21AYrmMAYrmM=AYrmMA21AYrmM
23 17 18 22 3eqtr3d A2MA21AYrmM2=AYrmMA21AYrmM
24 15 23 oveq12d A2MAXrmM2+A21AYrmM2=AXrmMAXrmM+AYrmMA21AYrmM
25 rmxynorm A2MAXrmM2A21AYrmM2=1
26 14 24 25 3eqtr3d A2MAXrmMAXrmM+AYrmMA21AYrmM=1
27 2 nn0zd A2MAXrmM
28 20 10 zmulcld A2MA21AYrmM
29 bezoutr1 AXrmMAYrmMAXrmMA21AYrmMAXrmMAXrmM+AYrmMA21AYrmM=1AXrmMgcdAYrmM=1
30 27 10 27 28 29 syl22anc A2MAXrmMAXrmM+AYrmMA21AYrmM=1AXrmMgcdAYrmM=1
31 26 30 mpd A2MAXrmMgcdAYrmM=1