Description: Diophantine expression for exponentiation. Lemma 3.1 of JonesMatijasevic p. 698. (Contributed by Stefan O'Rear, 16-Oct-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | jm3.1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 | |
|
2 | simpl2 | |
|
3 | simpl3 | |
|
4 | simpr | |
|
5 | 1 2 3 4 | jm3.1lem2 | |
6 | eluzge2nn0 | |
|
7 | 6 | 3ad2ant2 | |
8 | 7 | adantr | |
9 | 3 | nnnn0d | |
10 | jm2.18 | |
|
11 | 1 8 9 10 | syl3anc | |
12 | simp1 | |
|
13 | nnz | |
|
14 | 13 | 3ad2ant3 | |
15 | frmx | |
|
16 | 15 | fovcl | |
17 | 12 14 16 | syl2anc | |
18 | 17 | nn0zd | |
19 | eluzelz | |
|
20 | eluzelz | |
|
21 | zsubcl | |
|
22 | 19 20 21 | syl2an | |
23 | 22 | 3adant3 | |
24 | frmy | |
|
25 | 24 | fovcl | |
26 | 12 14 25 | syl2anc | |
27 | 23 26 | zmulcld | |
28 | 18 27 | zsubcld | |
29 | 28 | adantr | |
30 | 1 2 3 4 | jm3.1lem3 | |
31 | nnnn0 | |
|
32 | 31 | 3ad2ant3 | |
33 | 7 32 | nn0expcld | |
34 | 33 | adantr | |
35 | divalgmodcl | |
|
36 | 29 30 34 35 | syl3anc | |
37 | 5 11 36 | mpbir2and | |