Metamath Proof Explorer


Theorem jm3.1

Description: Diophantine expression for exponentiation. Lemma 3.1 of JonesMatijasevic p. 698. (Contributed by Stefan O'Rear, 16-Oct-2014)

Ref Expression
Assertion jm3.1 A2K2NKYrmN+1AKN=AXrmNAKAYrmNmod2AK-K2-1

Proof

Step Hyp Ref Expression
1 simpl1 A2K2NKYrmN+1AA2
2 simpl2 A2K2NKYrmN+1AK2
3 simpl3 A2K2NKYrmN+1AN
4 simpr A2K2NKYrmN+1AKYrmN+1A
5 1 2 3 4 jm3.1lem2 A2K2NKYrmN+1AKN<2AK-K2-1
6 eluzge2nn0 K2K0
7 6 3ad2ant2 A2K2NK0
8 7 adantr A2K2NKYrmN+1AK0
9 3 nnnn0d A2K2NKYrmN+1AN0
10 jm2.18 A2K0N02AK-K2-1AXrmN-AKAYrmN-KN
11 1 8 9 10 syl3anc A2K2NKYrmN+1A2AK-K2-1AXrmN-AKAYrmN-KN
12 simp1 A2K2NA2
13 nnz NN
14 13 3ad2ant3 A2K2NN
15 frmx Xrm:2×0
16 15 fovcl A2NAXrmN0
17 12 14 16 syl2anc A2K2NAXrmN0
18 17 nn0zd A2K2NAXrmN
19 eluzelz A2A
20 eluzelz K2K
21 zsubcl AKAK
22 19 20 21 syl2an A2K2AK
23 22 3adant3 A2K2NAK
24 frmy Yrm:2×
25 24 fovcl A2NAYrmN
26 12 14 25 syl2anc A2K2NAYrmN
27 23 26 zmulcld A2K2NAKAYrmN
28 18 27 zsubcld A2K2NAXrmNAKAYrmN
29 28 adantr A2K2NKYrmN+1AAXrmNAKAYrmN
30 1 2 3 4 jm3.1lem3 A2K2NKYrmN+1A2AK-K2-1
31 nnnn0 NN0
32 31 3ad2ant3 A2K2NN0
33 7 32 nn0expcld A2K2NKN0
34 33 adantr A2K2NKYrmN+1AKN0
35 divalgmodcl AXrmNAKAYrmN2AK-K2-1KN0KN=AXrmNAKAYrmNmod2AK-K2-1KN<2AK-K2-12AK-K2-1AXrmN-AKAYrmN-KN
36 29 30 34 35 syl3anc A2K2NKYrmN+1AKN=AXrmNAKAYrmNmod2AK-K2-1KN<2AK-K2-12AK-K2-1AXrmN-AKAYrmN-KN
37 5 11 36 mpbir2and A2K2NKYrmN+1AKN=AXrmNAKAYrmNmod2AK-K2-1