Metamath Proof Explorer


Theorem kgenval

Description: Value of the compact generator. (The "k" in kGen comes from the name "k-space" for these spaces, after the German word kompakt.) (Contributed by Mario Carneiro, 20-Mar-2015)

Ref Expression
Assertion kgenval JTopOnX𝑘GenJ=x𝒫X|k𝒫XJ𝑡kCompxkJ𝑡k

Proof

Step Hyp Ref Expression
1 df-kgen 𝑘Gen=jTopx𝒫j|k𝒫jj𝑡kCompxkj𝑡k
2 unieq j=Jj=J
3 toponuni JTopOnXX=J
4 3 eqcomd JTopOnXJ=X
5 2 4 sylan9eqr JTopOnXj=Jj=X
6 5 pweqd JTopOnXj=J𝒫j=𝒫X
7 oveq1 j=Jj𝑡k=J𝑡k
8 7 eleq1d j=Jj𝑡kCompJ𝑡kComp
9 7 eleq2d j=Jxkj𝑡kxkJ𝑡k
10 8 9 imbi12d j=Jj𝑡kCompxkj𝑡kJ𝑡kCompxkJ𝑡k
11 10 adantl JTopOnXj=Jj𝑡kCompxkj𝑡kJ𝑡kCompxkJ𝑡k
12 6 11 raleqbidv JTopOnXj=Jk𝒫jj𝑡kCompxkj𝑡kk𝒫XJ𝑡kCompxkJ𝑡k
13 6 12 rabeqbidv JTopOnXj=Jx𝒫j|k𝒫jj𝑡kCompxkj𝑡k=x𝒫X|k𝒫XJ𝑡kCompxkJ𝑡k
14 topontop JTopOnXJTop
15 toponmax JTopOnXXJ
16 pwexg XJ𝒫XV
17 rabexg 𝒫XVx𝒫X|k𝒫XJ𝑡kCompxkJ𝑡kV
18 15 16 17 3syl JTopOnXx𝒫X|k𝒫XJ𝑡kCompxkJ𝑡kV
19 1 13 14 18 fvmptd2 JTopOnX𝑘GenJ=x𝒫X|k𝒫XJ𝑡kCompxkJ𝑡k