Description: The composition of two lattice automorphisms is a lattice automorphism. (Contributed by NM, 19-Apr-2013)
Ref | Expression | ||
---|---|---|---|
Hypothesis | lautco.i | |
|
Assertion | lautco | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lautco.i | |
|
2 | eqid | |
|
3 | 2 1 | laut1o | |
4 | 3 | 3adant3 | |
5 | 2 1 | laut1o | |
6 | 5 | 3adant2 | |
7 | f1oco | |
|
8 | 4 6 7 | syl2anc | |
9 | simpl1 | |
|
10 | simpl2 | |
|
11 | simpl3 | |
|
12 | simprl | |
|
13 | 2 1 | lautcl | |
14 | 9 11 12 13 | syl21anc | |
15 | simprr | |
|
16 | 2 1 | lautcl | |
17 | 9 11 15 16 | syl21anc | |
18 | eqid | |
|
19 | 2 18 1 | lautle | |
20 | 9 10 14 17 19 | syl22anc | |
21 | 2 18 1 | lautle | |
22 | 21 | 3adantl2 | |
23 | f1of | |
|
24 | 6 23 | syl | |
25 | simpl | |
|
26 | fvco3 | |
|
27 | 24 25 26 | syl2an | |
28 | simpr | |
|
29 | fvco3 | |
|
30 | 24 28 29 | syl2an | |
31 | 27 30 | breq12d | |
32 | 20 22 31 | 3bitr4d | |
33 | 32 | ralrimivva | |
34 | 2 18 1 | islaut | |
35 | 34 | 3ad2ant1 | |
36 | 8 33 35 | mpbir2and | |