Metamath Proof Explorer


Theorem lautco

Description: The composition of two lattice automorphisms is a lattice automorphism. (Contributed by NM, 19-Apr-2013)

Ref Expression
Hypothesis lautco.i I=LAutK
Assertion lautco KVFIGIFGI

Proof

Step Hyp Ref Expression
1 lautco.i I=LAutK
2 eqid BaseK=BaseK
3 2 1 laut1o KVFIF:BaseK1-1 ontoBaseK
4 3 3adant3 KVFIGIF:BaseK1-1 ontoBaseK
5 2 1 laut1o KVGIG:BaseK1-1 ontoBaseK
6 5 3adant2 KVFIGIG:BaseK1-1 ontoBaseK
7 f1oco F:BaseK1-1 ontoBaseKG:BaseK1-1 ontoBaseKFG:BaseK1-1 ontoBaseK
8 4 6 7 syl2anc KVFIGIFG:BaseK1-1 ontoBaseK
9 simpl1 KVFIGIxBaseKyBaseKKV
10 simpl2 KVFIGIxBaseKyBaseKFI
11 simpl3 KVFIGIxBaseKyBaseKGI
12 simprl KVFIGIxBaseKyBaseKxBaseK
13 2 1 lautcl KVGIxBaseKGxBaseK
14 9 11 12 13 syl21anc KVFIGIxBaseKyBaseKGxBaseK
15 simprr KVFIGIxBaseKyBaseKyBaseK
16 2 1 lautcl KVGIyBaseKGyBaseK
17 9 11 15 16 syl21anc KVFIGIxBaseKyBaseKGyBaseK
18 eqid K=K
19 2 18 1 lautle KVFIGxBaseKGyBaseKGxKGyFGxKFGy
20 9 10 14 17 19 syl22anc KVFIGIxBaseKyBaseKGxKGyFGxKFGy
21 2 18 1 lautle KVGIxBaseKyBaseKxKyGxKGy
22 21 3adantl2 KVFIGIxBaseKyBaseKxKyGxKGy
23 f1of G:BaseK1-1 ontoBaseKG:BaseKBaseK
24 6 23 syl KVFIGIG:BaseKBaseK
25 simpl xBaseKyBaseKxBaseK
26 fvco3 G:BaseKBaseKxBaseKFGx=FGx
27 24 25 26 syl2an KVFIGIxBaseKyBaseKFGx=FGx
28 simpr xBaseKyBaseKyBaseK
29 fvco3 G:BaseKBaseKyBaseKFGy=FGy
30 24 28 29 syl2an KVFIGIxBaseKyBaseKFGy=FGy
31 27 30 breq12d KVFIGIxBaseKyBaseKFGxKFGyFGxKFGy
32 20 22 31 3bitr4d KVFIGIxBaseKyBaseKxKyFGxKFGy
33 32 ralrimivva KVFIGIxBaseKyBaseKxKyFGxKFGy
34 2 18 1 islaut KVFGIFG:BaseK1-1 ontoBaseKxBaseKyBaseKxKyFGxKFGy
35 34 3ad2ant1 KVFIGIFGIFG:BaseK1-1 ontoBaseKxBaseKyBaseKxKyFGxKFGy
36 8 33 35 mpbir2and KVFIGIFGI