Metamath Proof Explorer


Theorem lcfrlem36

Description: Lemma for lcfr . (Contributed by NM, 6-Mar-2015)

Ref Expression
Hypotheses lcfrlem17.h H = LHyp K
lcfrlem17.o ˙ = ocH K W
lcfrlem17.u U = DVecH K W
lcfrlem17.v V = Base U
lcfrlem17.p + ˙ = + U
lcfrlem17.z 0 ˙ = 0 U
lcfrlem17.n N = LSpan U
lcfrlem17.a A = LSAtoms U
lcfrlem17.k φ K HL W H
lcfrlem17.x φ X V 0 ˙
lcfrlem17.y φ Y V 0 ˙
lcfrlem17.ne φ N X N Y
lcfrlem22.b B = N X Y ˙ X + ˙ Y
lcfrlem24.t · ˙ = U
lcfrlem24.s S = Scalar U
lcfrlem24.q Q = 0 S
lcfrlem24.r R = Base S
lcfrlem24.j J = x V 0 ˙ v V ι k R | w ˙ x v = w + ˙ k · ˙ x
lcfrlem24.ib φ I B
lcfrlem24.l L = LKer U
lcfrlem25.d D = LDual U
lcfrlem28.jn φ J Y I Q
lcfrlem29.i F = inv r S
lcfrlem30.m - ˙ = - D
lcfrlem30.c C = J X - ˙ F J Y I S J X I D J Y
Assertion lcfrlem36 φ X + ˙ Y ˙ L C

Proof

Step Hyp Ref Expression
1 lcfrlem17.h H = LHyp K
2 lcfrlem17.o ˙ = ocH K W
3 lcfrlem17.u U = DVecH K W
4 lcfrlem17.v V = Base U
5 lcfrlem17.p + ˙ = + U
6 lcfrlem17.z 0 ˙ = 0 U
7 lcfrlem17.n N = LSpan U
8 lcfrlem17.a A = LSAtoms U
9 lcfrlem17.k φ K HL W H
10 lcfrlem17.x φ X V 0 ˙
11 lcfrlem17.y φ Y V 0 ˙
12 lcfrlem17.ne φ N X N Y
13 lcfrlem22.b B = N X Y ˙ X + ˙ Y
14 lcfrlem24.t · ˙ = U
15 lcfrlem24.s S = Scalar U
16 lcfrlem24.q Q = 0 S
17 lcfrlem24.r R = Base S
18 lcfrlem24.j J = x V 0 ˙ v V ι k R | w ˙ x v = w + ˙ k · ˙ x
19 lcfrlem24.ib φ I B
20 lcfrlem24.l L = LKer U
21 lcfrlem25.d D = LDual U
22 lcfrlem28.jn φ J Y I Q
23 lcfrlem29.i F = inv r S
24 lcfrlem30.m - ˙ = - D
25 lcfrlem30.c C = J X - ˙ F J Y I S J X I D J Y
26 1 2 3 4 5 6 7 8 9 10 11 12 lcfrlem17 φ X + ˙ Y V 0 ˙
27 26 eldifad φ X + ˙ Y V
28 1 3 2 4 7 9 27 dochocsn φ ˙ ˙ X + ˙ Y = N X + ˙ Y
29 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 lcfrlem35 φ ˙ X + ˙ Y = L C
30 29 fveq2d φ ˙ ˙ X + ˙ Y = ˙ L C
31 28 30 eqtr3d φ N X + ˙ Y = ˙ L C
32 eqimss N X + ˙ Y = ˙ L C N X + ˙ Y ˙ L C
33 31 32 syl φ N X + ˙ Y ˙ L C
34 eqid LSubSp U = LSubSp U
35 1 3 9 dvhlmod φ U LMod
36 eqid LFnl U = LFnl U
37 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 lcfrlem30 φ C LFnl U
38 4 36 20 35 37 lkrssv φ L C V
39 1 3 4 34 2 dochlss K HL W H L C V ˙ L C LSubSp U
40 9 38 39 syl2anc φ ˙ L C LSubSp U
41 4 34 7 35 40 27 lspsnel5 φ X + ˙ Y ˙ L C N X + ˙ Y ˙ L C
42 33 41 mpbird φ X + ˙ Y ˙ L C