Metamath Proof Explorer


Theorem lcfrlem36

Description: Lemma for lcfr . (Contributed by NM, 6-Mar-2015)

Ref Expression
Hypotheses lcfrlem17.h H=LHypK
lcfrlem17.o ˙=ocHKW
lcfrlem17.u U=DVecHKW
lcfrlem17.v V=BaseU
lcfrlem17.p +˙=+U
lcfrlem17.z 0˙=0U
lcfrlem17.n N=LSpanU
lcfrlem17.a A=LSAtomsU
lcfrlem17.k φKHLWH
lcfrlem17.x φXV0˙
lcfrlem17.y φYV0˙
lcfrlem17.ne φNXNY
lcfrlem22.b B=NXY˙X+˙Y
lcfrlem24.t ·˙=U
lcfrlem24.s S=ScalarU
lcfrlem24.q Q=0S
lcfrlem24.r R=BaseS
lcfrlem24.j J=xV0˙vVιkR|w˙xv=w+˙k·˙x
lcfrlem24.ib φIB
lcfrlem24.l L=LKerU
lcfrlem25.d D=LDualU
lcfrlem28.jn φJYIQ
lcfrlem29.i F=invrS
lcfrlem30.m -˙=-D
lcfrlem30.c C=JX-˙FJYISJXIDJY
Assertion lcfrlem36 φX+˙Y˙LC

Proof

Step Hyp Ref Expression
1 lcfrlem17.h H=LHypK
2 lcfrlem17.o ˙=ocHKW
3 lcfrlem17.u U=DVecHKW
4 lcfrlem17.v V=BaseU
5 lcfrlem17.p +˙=+U
6 lcfrlem17.z 0˙=0U
7 lcfrlem17.n N=LSpanU
8 lcfrlem17.a A=LSAtomsU
9 lcfrlem17.k φKHLWH
10 lcfrlem17.x φXV0˙
11 lcfrlem17.y φYV0˙
12 lcfrlem17.ne φNXNY
13 lcfrlem22.b B=NXY˙X+˙Y
14 lcfrlem24.t ·˙=U
15 lcfrlem24.s S=ScalarU
16 lcfrlem24.q Q=0S
17 lcfrlem24.r R=BaseS
18 lcfrlem24.j J=xV0˙vVιkR|w˙xv=w+˙k·˙x
19 lcfrlem24.ib φIB
20 lcfrlem24.l L=LKerU
21 lcfrlem25.d D=LDualU
22 lcfrlem28.jn φJYIQ
23 lcfrlem29.i F=invrS
24 lcfrlem30.m -˙=-D
25 lcfrlem30.c C=JX-˙FJYISJXIDJY
26 1 2 3 4 5 6 7 8 9 10 11 12 lcfrlem17 φX+˙YV0˙
27 26 eldifad φX+˙YV
28 1 3 2 4 7 9 27 dochocsn φ˙˙X+˙Y=NX+˙Y
29 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 lcfrlem35 φ˙X+˙Y=LC
30 29 fveq2d φ˙˙X+˙Y=˙LC
31 28 30 eqtr3d φNX+˙Y=˙LC
32 eqimss NX+˙Y=˙LCNX+˙Y˙LC
33 31 32 syl φNX+˙Y˙LC
34 eqid LSubSpU=LSubSpU
35 1 3 9 dvhlmod φULMod
36 eqid LFnlU=LFnlU
37 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 lcfrlem30 φCLFnlU
38 4 36 20 35 37 lkrssv φLCV
39 1 3 4 34 2 dochlss KHLWHLCV˙LCLSubSpU
40 9 38 39 syl2anc φ˙LCLSubSpU
41 4 34 7 35 40 27 lspsnel5 φX+˙Y˙LCNX+˙Y˙LC
42 33 41 mpbird φX+˙Y˙LC