Metamath Proof Explorer


Theorem lcmass

Description: Associative law for lcm operator. (Contributed by Steve Rodriguez, 20-Jan-2020) (Proof shortened by AV, 16-Sep-2020)

Ref Expression
Assertion lcmass N M P N lcm M lcm P = N lcm M lcm P

Proof

Step Hyp Ref Expression
1 orass N = 0 M = 0 P = 0 N = 0 M = 0 P = 0
2 anass N x M x P x N x M x P x
3 2 rabbii x | N x M x P x = x | N x M x P x
4 3 infeq1i sup x | N x M x P x < = sup x | N x M x P x <
5 1 4 ifbieq2i if N = 0 M = 0 P = 0 0 sup x | N x M x P x < = if N = 0 M = 0 P = 0 0 sup x | N x M x P x <
6 lcmcl N M N lcm M 0
7 6 3adant3 N M P N lcm M 0
8 7 nn0zd N M P N lcm M
9 simp3 N M P P
10 lcmval N lcm M P N lcm M lcm P = if N lcm M = 0 P = 0 0 sup x | N lcm M x P x <
11 8 9 10 syl2anc N M P N lcm M lcm P = if N lcm M = 0 P = 0 0 sup x | N lcm M x P x <
12 lcmeq0 N M N lcm M = 0 N = 0 M = 0
13 12 3adant3 N M P N lcm M = 0 N = 0 M = 0
14 13 orbi1d N M P N lcm M = 0 P = 0 N = 0 M = 0 P = 0
15 14 bicomd N M P N = 0 M = 0 P = 0 N lcm M = 0 P = 0
16 nnz x x
17 16 adantl N M P x x
18 simp1 N M P N
19 18 adantr N M P x N
20 simpl2 N M P x M
21 lcmdvdsb x N M N x M x N lcm M x
22 17 19 20 21 syl3anc N M P x N x M x N lcm M x
23 22 anbi1d N M P x N x M x P x N lcm M x P x
24 23 rabbidva N M P x | N x M x P x = x | N lcm M x P x
25 24 infeq1d N M P sup x | N x M x P x < = sup x | N lcm M x P x <
26 15 25 ifbieq2d N M P if N = 0 M = 0 P = 0 0 sup x | N x M x P x < = if N lcm M = 0 P = 0 0 sup x | N lcm M x P x <
27 11 26 eqtr4d N M P N lcm M lcm P = if N = 0 M = 0 P = 0 0 sup x | N x M x P x <
28 lcmcl M P M lcm P 0
29 28 3adant1 N M P M lcm P 0
30 29 nn0zd N M P M lcm P
31 lcmval N M lcm P N lcm M lcm P = if N = 0 M lcm P = 0 0 sup x | N x M lcm P x <
32 18 30 31 syl2anc N M P N lcm M lcm P = if N = 0 M lcm P = 0 0 sup x | N x M lcm P x <
33 lcmeq0 M P M lcm P = 0 M = 0 P = 0
34 33 3adant1 N M P M lcm P = 0 M = 0 P = 0
35 34 orbi2d N M P N = 0 M lcm P = 0 N = 0 M = 0 P = 0
36 35 bicomd N M P N = 0 M = 0 P = 0 N = 0 M lcm P = 0
37 9 adantr N M P x P
38 lcmdvdsb x M P M x P x M lcm P x
39 17 20 37 38 syl3anc N M P x M x P x M lcm P x
40 39 anbi2d N M P x N x M x P x N x M lcm P x
41 40 rabbidva N M P x | N x M x P x = x | N x M lcm P x
42 41 infeq1d N M P sup x | N x M x P x < = sup x | N x M lcm P x <
43 36 42 ifbieq2d N M P if N = 0 M = 0 P = 0 0 sup x | N x M x P x < = if N = 0 M lcm P = 0 0 sup x | N x M lcm P x <
44 32 43 eqtr4d N M P N lcm M lcm P = if N = 0 M = 0 P = 0 0 sup x | N x M x P x <
45 5 27 44 3eqtr4a N M P N lcm M lcm P = N lcm M lcm P