| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gcdcl |
|
| 2 |
1
|
nn0cnd |
|
| 3 |
2
|
mul02d |
|
| 4 |
|
0z |
|
| 5 |
|
lcmcom |
|
| 6 |
4 5
|
mpan2 |
|
| 7 |
|
lcm0val |
|
| 8 |
6 7
|
eqtr3d |
|
| 9 |
8
|
adantl |
|
| 10 |
9
|
oveq1d |
|
| 11 |
|
zcn |
|
| 12 |
11
|
adantl |
|
| 13 |
12
|
mul02d |
|
| 14 |
13
|
abs00bd |
|
| 15 |
3 10 14
|
3eqtr4d |
|
| 16 |
15
|
adantr |
|
| 17 |
|
simpr |
|
| 18 |
17
|
oveq1d |
|
| 19 |
18
|
oveq1d |
|
| 20 |
17
|
oveq1d |
|
| 21 |
20
|
fveq2d |
|
| 22 |
16 19 21
|
3eqtr4d |
|
| 23 |
|
lcm0val |
|
| 24 |
23
|
adantr |
|
| 25 |
24
|
oveq1d |
|
| 26 |
|
zcn |
|
| 27 |
26
|
adantr |
|
| 28 |
27
|
mul01d |
|
| 29 |
28
|
abs00bd |
|
| 30 |
3 25 29
|
3eqtr4d |
|
| 31 |
30
|
adantr |
|
| 32 |
|
simpr |
|
| 33 |
32
|
oveq2d |
|
| 34 |
33
|
oveq1d |
|
| 35 |
32
|
oveq2d |
|
| 36 |
35
|
fveq2d |
|
| 37 |
31 34 36
|
3eqtr4d |
|
| 38 |
22 37
|
jaodan |
|
| 39 |
|
neanior |
|
| 40 |
|
nnabscl |
|
| 41 |
|
nnabscl |
|
| 42 |
40 41
|
anim12i |
|
| 43 |
42
|
an4s |
|
| 44 |
39 43
|
sylan2br |
|
| 45 |
|
lcmgcdlem |
|
| 46 |
45
|
simpld |
|
| 47 |
44 46
|
syl |
|
| 48 |
|
lcmabs |
|
| 49 |
|
gcdabs |
|
| 50 |
48 49
|
oveq12d |
|
| 51 |
50
|
adantr |
|
| 52 |
|
absidm |
|
| 53 |
|
absidm |
|
| 54 |
52 53
|
oveqan12d |
|
| 55 |
26 11 54
|
syl2an |
|
| 56 |
|
nn0abscl |
|
| 57 |
56
|
nn0cnd |
|
| 58 |
57
|
adantr |
|
| 59 |
|
nn0abscl |
|
| 60 |
59
|
nn0cnd |
|
| 61 |
60
|
adantl |
|
| 62 |
58 61
|
absmuld |
|
| 63 |
27 12
|
absmuld |
|
| 64 |
55 62 63
|
3eqtr4d |
|
| 65 |
64
|
adantr |
|
| 66 |
47 51 65
|
3eqtr3d |
|
| 67 |
38 66
|
pm2.61dan |
|