Metamath Proof Explorer


Theorem lcmineqlem15

Description: F times the least common multiple of 1 to n is a natural number. (Contributed by metakunt, 10-May-2024)

Ref Expression
Hypotheses lcmineqlem15.1 F = 0 1 x M 1 1 x N M dx
lcmineqlem15.2 φ N
lcmineqlem15.3 φ M
lcmineqlem15.4 φ M N
Assertion lcmineqlem15 φ lcm _ 1 N F

Proof

Step Hyp Ref Expression
1 lcmineqlem15.1 F = 0 1 x M 1 1 x N M dx
2 lcmineqlem15.2 φ N
3 lcmineqlem15.3 φ M
4 lcmineqlem15.4 φ M N
5 1 2 3 4 lcmineqlem6 φ lcm _ 1 N F
6 fz1ssnn 1 N
7 fzfi 1 N Fin
8 lcmfnncl 1 N 1 N Fin lcm _ 1 N
9 6 7 8 mp2an lcm _ 1 N
10 9 a1i φ lcm _ 1 N
11 10 nnred φ lcm _ 1 N
12 1 3 2 4 lcmineqlem13 φ F = 1 M ( N M)
13 1red φ 1
14 3 nnnn0d φ M 0
15 2 14 4 bccl2d φ ( N M)
16 3 15 nnmulcld φ M ( N M)
17 16 nnred φ M ( N M)
18 16 nnne0d φ M ( N M) 0
19 13 17 18 redivcld φ 1 M ( N M)
20 12 19 eqeltrd φ F
21 10 nngt0d φ 0 < lcm _ 1 N
22 nnrecgt0 M ( N M) 0 < 1 M ( N M)
23 16 22 syl φ 0 < 1 M ( N M)
24 23 12 breqtrrd φ 0 < F
25 11 20 21 24 mulgt0d φ 0 < lcm _ 1 N F
26 elnnz lcm _ 1 N F lcm _ 1 N F 0 < lcm _ 1 N F
27 5 25 26 sylanbrc φ lcm _ 1 N F