Metamath Proof Explorer


Theorem lcoc0

Description: Properties of a linear combination where all scalars are 0. (Contributed by AV, 12-Apr-2019) (Revised by AV, 28-Jul-2019)

Ref Expression
Hypotheses lincvalsc0.b B=BaseM
lincvalsc0.s S=ScalarM
lincvalsc0.0 0˙=0S
lincvalsc0.z Z=0M
lincvalsc0.f F=xV0˙
lcoc0.r R=BaseS
Assertion lcoc0 MLModV𝒫BFRVfinSupp0˙FFlinCMV=Z

Proof

Step Hyp Ref Expression
1 lincvalsc0.b B=BaseM
2 lincvalsc0.s S=ScalarM
3 lincvalsc0.0 0˙=0S
4 lincvalsc0.z Z=0M
5 lincvalsc0.f F=xV0˙
6 lcoc0.r R=BaseS
7 2 6 3 lmod0cl MLMod0˙R
8 7 ad2antrr MLModV𝒫BxV0˙R
9 8 5 fmptd MLModV𝒫BF:VR
10 6 fvexi RV
11 10 a1i MLModRV
12 elmapg RVV𝒫BFRVF:VR
13 11 12 sylan MLModV𝒫BFRVF:VR
14 9 13 mpbird MLModV𝒫BFRV
15 eqidd x=v0˙=0˙
16 15 cbvmptv xV0˙=vV0˙
17 5 16 eqtri F=vV0˙
18 simpr MLModV𝒫BV𝒫B
19 3 fvexi 0˙V
20 19 a1i MLModV𝒫B0˙V
21 19 a1i MLModV𝒫BvV0˙V
22 17 18 20 21 mptsuppd MLModV𝒫BFsupp0˙=vV|0˙0˙
23 neirr ¬0˙0˙
24 23 a1i MLModV𝒫B¬0˙0˙
25 24 ralrimivw MLModV𝒫BvV¬0˙0˙
26 rabeq0 vV|0˙0˙=vV¬0˙0˙
27 25 26 sylibr MLModV𝒫BvV|0˙0˙=
28 0fin Fin
29 28 a1i MLModV𝒫BFin
30 27 29 eqeltrd MLModV𝒫BvV|0˙0˙Fin
31 22 30 eqeltrd MLModV𝒫BFsupp0˙Fin
32 5 funmpt2 FunF
33 32 a1i MLModV𝒫BFunF
34 funisfsupp FunFFRV0˙VfinSupp0˙FFsupp0˙Fin
35 33 14 20 34 syl3anc MLModV𝒫BfinSupp0˙FFsupp0˙Fin
36 31 35 mpbird MLModV𝒫BfinSupp0˙F
37 1 2 3 4 5 lincvalsc0 MLModV𝒫BFlinCMV=Z
38 14 36 37 3jca MLModV𝒫BFRVfinSupp0˙FFlinCMV=Z