Metamath Proof Explorer


Theorem ldualvsubcl

Description: Closure of vector subtraction in the dual of a vector space. (Contributed by NM, 27-Feb-2015)

Ref Expression
Hypotheses ldualvsubcl.f F=LFnlW
ldualvsubcl.d D=LDualW
ldualvsubcl.m -˙=-D
ldualvsubcl.w φWLMod
ldualvsubcl.g φGF
ldualvsubcl.h φHF
Assertion ldualvsubcl φG-˙HF

Proof

Step Hyp Ref Expression
1 ldualvsubcl.f F=LFnlW
2 ldualvsubcl.d D=LDualW
3 ldualvsubcl.m -˙=-D
4 ldualvsubcl.w φWLMod
5 ldualvsubcl.g φGF
6 ldualvsubcl.h φHF
7 eqid ScalarW=ScalarW
8 eqid invgScalarW=invgScalarW
9 eqid 1ScalarW=1ScalarW
10 eqid +D=+D
11 eqid D=D
12 7 8 9 1 2 10 11 3 4 5 6 ldualvsub φG-˙H=G+DinvgScalarW1ScalarWDH
13 eqid BaseScalarW=BaseScalarW
14 7 lmodring WLModScalarWRing
15 4 14 syl φScalarWRing
16 ringgrp ScalarWRingScalarWGrp
17 15 16 syl φScalarWGrp
18 13 9 ringidcl ScalarWRing1ScalarWBaseScalarW
19 15 18 syl φ1ScalarWBaseScalarW
20 13 8 grpinvcl ScalarWGrp1ScalarWBaseScalarWinvgScalarW1ScalarWBaseScalarW
21 17 19 20 syl2anc φinvgScalarW1ScalarWBaseScalarW
22 1 7 13 2 11 4 21 6 ldualvscl φinvgScalarW1ScalarWDHF
23 1 2 10 4 5 22 ldualvaddcl φG+DinvgScalarW1ScalarWDHF
24 12 23 eqeltrd φG-˙HF