Metamath Proof Explorer


Theorem ldualvsubcl

Description: Closure of vector subtraction in the dual of a vector space. (Contributed by NM, 27-Feb-2015)

Ref Expression
Hypotheses ldualvsubcl.f F = LFnl W
ldualvsubcl.d D = LDual W
ldualvsubcl.m - ˙ = - D
ldualvsubcl.w φ W LMod
ldualvsubcl.g φ G F
ldualvsubcl.h φ H F
Assertion ldualvsubcl φ G - ˙ H F

Proof

Step Hyp Ref Expression
1 ldualvsubcl.f F = LFnl W
2 ldualvsubcl.d D = LDual W
3 ldualvsubcl.m - ˙ = - D
4 ldualvsubcl.w φ W LMod
5 ldualvsubcl.g φ G F
6 ldualvsubcl.h φ H F
7 eqid Scalar W = Scalar W
8 eqid inv g Scalar W = inv g Scalar W
9 eqid 1 Scalar W = 1 Scalar W
10 eqid + D = + D
11 eqid D = D
12 7 8 9 1 2 10 11 3 4 5 6 ldualvsub φ G - ˙ H = G + D inv g Scalar W 1 Scalar W D H
13 eqid Base Scalar W = Base Scalar W
14 7 lmodring W LMod Scalar W Ring
15 4 14 syl φ Scalar W Ring
16 ringgrp Scalar W Ring Scalar W Grp
17 15 16 syl φ Scalar W Grp
18 13 9 ringidcl Scalar W Ring 1 Scalar W Base Scalar W
19 15 18 syl φ 1 Scalar W Base Scalar W
20 13 8 grpinvcl Scalar W Grp 1 Scalar W Base Scalar W inv g Scalar W 1 Scalar W Base Scalar W
21 17 19 20 syl2anc φ inv g Scalar W 1 Scalar W Base Scalar W
22 1 7 13 2 11 4 21 6 ldualvscl φ inv g Scalar W 1 Scalar W D H F
23 1 2 10 4 5 22 ldualvaddcl φ G + D inv g Scalar W 1 Scalar W D H F
24 12 23 eqeltrd φ G - ˙ H F