Step |
Hyp |
Ref |
Expression |
1 |
|
ldualvsubcl.f |
|
2 |
|
ldualvsubcl.d |
|
3 |
|
ldualvsubcl.m |
|
4 |
|
ldualvsubcl.w |
|
5 |
|
ldualvsubcl.g |
|
6 |
|
ldualvsubcl.h |
|
7 |
|
eqid |
|
8 |
|
eqid |
|
9 |
|
eqid |
|
10 |
|
eqid |
|
11 |
|
eqid |
|
12 |
7 8 9 1 2 10 11 3 4 5 6
|
ldualvsub |
|
13 |
|
eqid |
|
14 |
7
|
lmodring |
|
15 |
4 14
|
syl |
|
16 |
|
ringgrp |
|
17 |
15 16
|
syl |
|
18 |
13 9
|
ringidcl |
|
19 |
15 18
|
syl |
|
20 |
13 8
|
grpinvcl |
|
21 |
17 19 20
|
syl2anc |
|
22 |
1 7 13 2 11 4 21 6
|
ldualvscl |
|
23 |
1 2 10 4 5 22
|
ldualvaddcl |
|
24 |
12 23
|
eqeltrd |
|