| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ldualvsubcl.f |  | 
						
							| 2 |  | ldualvsubcl.d |  | 
						
							| 3 |  | ldualvsubcl.m |  | 
						
							| 4 |  | ldualvsubcl.w |  | 
						
							| 5 |  | ldualvsubcl.g |  | 
						
							| 6 |  | ldualvsubcl.h |  | 
						
							| 7 |  | eqid |  | 
						
							| 8 |  | eqid |  | 
						
							| 9 |  | eqid |  | 
						
							| 10 |  | eqid |  | 
						
							| 11 |  | eqid |  | 
						
							| 12 | 7 8 9 1 2 10 11 3 4 5 6 | ldualvsub |  | 
						
							| 13 |  | eqid |  | 
						
							| 14 | 7 | lmodring |  | 
						
							| 15 | 4 14 | syl |  | 
						
							| 16 |  | ringgrp |  | 
						
							| 17 | 15 16 | syl |  | 
						
							| 18 | 13 9 | ringidcl |  | 
						
							| 19 | 15 18 | syl |  | 
						
							| 20 | 13 8 | grpinvcl |  | 
						
							| 21 | 17 19 20 | syl2anc |  | 
						
							| 22 | 1 7 13 2 11 4 21 6 | ldualvscl |  | 
						
							| 23 | 1 2 10 4 5 22 | ldualvaddcl |  | 
						
							| 24 | 12 23 | eqeltrd |  |