Metamath Proof Explorer


Theorem lebnumlem2

Description: Lemma for lebnum . As a finite sum of point-to-set distance functions, which are continuous by metdscn , the function F is also continuous. (Contributed by Mario Carneiro, 14-Feb-2015) (Revised by AV, 30-Sep-2020)

Ref Expression
Hypotheses lebnum.j J = MetOpen D
lebnum.d φ D Met X
lebnum.c φ J Comp
lebnum.s φ U J
lebnum.u φ X = U
lebnumlem1.u φ U Fin
lebnumlem1.n φ ¬ X U
lebnumlem1.f F = y X k U sup ran z X k y D z * <
lebnumlem2.k K = topGen ran .
Assertion lebnumlem2 φ F J Cn K

Proof

Step Hyp Ref Expression
1 lebnum.j J = MetOpen D
2 lebnum.d φ D Met X
3 lebnum.c φ J Comp
4 lebnum.s φ U J
5 lebnum.u φ X = U
6 lebnumlem1.u φ U Fin
7 lebnumlem1.n φ ¬ X U
8 lebnumlem1.f F = y X k U sup ran z X k y D z * <
9 lebnumlem2.k K = topGen ran .
10 eqid TopOpen fld = TopOpen fld
11 metxmet D Met X D ∞Met X
12 2 11 syl φ D ∞Met X
13 1 mopntopon D ∞Met X J TopOn X
14 12 13 syl φ J TopOn X
15 2 adantr φ k U D Met X
16 difssd φ k U X k X
17 12 adantr φ k U D ∞Met X
18 17 13 syl φ k U J TopOn X
19 4 sselda φ k U k J
20 toponss J TopOn X k J k X
21 18 19 20 syl2anc φ k U k X
22 eleq1 k = X k U X U
23 22 notbid k = X ¬ k U ¬ X U
24 7 23 syl5ibrcom φ k = X ¬ k U
25 24 necon2ad φ k U k X
26 25 imp φ k U k X
27 pssdifn0 k X k X X k
28 21 26 27 syl2anc φ k U X k
29 eqid y X sup ran z X k y D z * < = y X sup ran z X k y D z * <
30 29 1 10 metdscn2 D Met X X k X X k y X sup ran z X k y D z * < J Cn TopOpen fld
31 15 16 28 30 syl3anc φ k U y X sup ran z X k y D z * < J Cn TopOpen fld
32 10 14 6 31 fsumcn φ y X k U sup ran z X k y D z * < J Cn TopOpen fld
33 8 32 eqeltrid φ F J Cn TopOpen fld
34 10 cnfldtopon TopOpen fld TopOn
35 34 a1i φ TopOpen fld TopOn
36 1 2 3 4 5 6 7 8 lebnumlem1 φ F : X +
37 36 frnd φ ran F +
38 rpssre +
39 37 38 sstrdi φ ran F
40 ax-resscn
41 40 a1i φ
42 cnrest2 TopOpen fld TopOn ran F F J Cn TopOpen fld F J Cn TopOpen fld 𝑡
43 35 39 41 42 syl3anc φ F J Cn TopOpen fld F J Cn TopOpen fld 𝑡
44 33 43 mpbid φ F J Cn TopOpen fld 𝑡
45 10 tgioo2 topGen ran . = TopOpen fld 𝑡
46 9 45 eqtri K = TopOpen fld 𝑡
47 46 oveq2i J Cn K = J Cn TopOpen fld 𝑡
48 44 47 eleqtrrdi φ F J Cn K