| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl |  | 
						
							| 2 |  | gt0ne0 |  | 
						
							| 3 | 1 2 | jca |  | 
						
							| 4 |  | redivcl |  | 
						
							| 5 | 4 | 3expb |  | 
						
							| 6 | 3 5 | sylan2 |  | 
						
							| 7 | 6 | 3adant3 |  | 
						
							| 8 |  | simp3 |  | 
						
							| 9 |  | simp2 |  | 
						
							| 10 |  | lemul1 |  | 
						
							| 11 | 7 8 9 10 | syl3anc |  | 
						
							| 12 | 11 | 3adant3r |  | 
						
							| 13 |  | recn |  | 
						
							| 14 | 13 | adantr |  | 
						
							| 15 |  | recn |  | 
						
							| 16 | 15 | ad2antrl |  | 
						
							| 17 | 2 | adantl |  | 
						
							| 18 | 14 16 17 | divcan1d |  | 
						
							| 19 | 18 | 3adant3 |  | 
						
							| 20 | 19 | breq1d |  | 
						
							| 21 |  | remulcl |  | 
						
							| 22 | 21 | ancoms |  | 
						
							| 23 | 22 | adantrr |  | 
						
							| 24 | 23 | 3adant1 |  | 
						
							| 25 |  | lediv1 |  | 
						
							| 26 | 24 25 | syld3an2 |  | 
						
							| 27 |  | recn |  | 
						
							| 28 | 27 | adantr |  | 
						
							| 29 |  | gt0ne0 |  | 
						
							| 30 | 28 29 | jca |  | 
						
							| 31 |  | divcan3 |  | 
						
							| 32 | 31 | 3expb |  | 
						
							| 33 | 15 30 32 | syl2an |  | 
						
							| 34 | 33 | 3adant1 |  | 
						
							| 35 | 34 | breq2d |  | 
						
							| 36 | 26 35 | bitrd |  | 
						
							| 37 | 36 | 3adant2r |  | 
						
							| 38 | 12 20 37 | 3bitrd |  |