Description: Weak ordering relationship for exponentiation of a fixed real base in [ 0 , 1 ] to integer exponents. (Contributed by Paul Chapman, 14-Jan-2008) (Revised by Mario Carneiro, 29-Apr-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | leexp2r | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 | |
|
2 | 1 | breq1d | |
3 | 2 | imbi2d | |
4 | oveq2 | |
|
5 | 4 | breq1d | |
6 | 5 | imbi2d | |
7 | oveq2 | |
|
8 | 7 | breq1d | |
9 | 8 | imbi2d | |
10 | oveq2 | |
|
11 | 10 | breq1d | |
12 | 11 | imbi2d | |
13 | reexpcl | |
|
14 | 13 | adantr | |
15 | 14 | leidd | |
16 | simprll | |
|
17 | 1red | |
|
18 | simprlr | |
|
19 | simpl | |
|
20 | eluznn0 | |
|
21 | 18 19 20 | syl2anc | |
22 | reexpcl | |
|
23 | 16 21 22 | syl2anc | |
24 | simprrl | |
|
25 | expge0 | |
|
26 | 16 21 24 25 | syl3anc | |
27 | simprrr | |
|
28 | 16 17 23 26 27 | lemul2ad | |
29 | 16 | recnd | |
30 | expp1 | |
|
31 | 29 21 30 | syl2anc | |
32 | 23 | recnd | |
33 | 32 | mulridd | |
34 | 33 | eqcomd | |
35 | 28 31 34 | 3brtr4d | |
36 | peano2nn0 | |
|
37 | 21 36 | syl | |
38 | reexpcl | |
|
39 | 16 37 38 | syl2anc | |
40 | 13 | ad2antrl | |
41 | letr | |
|
42 | 39 23 40 41 | syl3anc | |
43 | 35 42 | mpand | |
44 | 43 | ex | |
45 | 44 | a2d | |
46 | 3 6 9 12 15 45 | uzind4i | |
47 | 46 | expd | |
48 | 47 | com12 | |
49 | 48 | 3impia | |
50 | 49 | imp | |