| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|
| 2 |
1
|
breq1d |
|
| 3 |
2
|
imbi2d |
|
| 4 |
|
oveq2 |
|
| 5 |
4
|
breq1d |
|
| 6 |
5
|
imbi2d |
|
| 7 |
|
oveq2 |
|
| 8 |
7
|
breq1d |
|
| 9 |
8
|
imbi2d |
|
| 10 |
|
oveq2 |
|
| 11 |
10
|
breq1d |
|
| 12 |
11
|
imbi2d |
|
| 13 |
|
reexpcl |
|
| 14 |
13
|
adantr |
|
| 15 |
14
|
leidd |
|
| 16 |
|
simprll |
|
| 17 |
|
1red |
|
| 18 |
|
simprlr |
|
| 19 |
|
simpl |
|
| 20 |
|
eluznn0 |
|
| 21 |
18 19 20
|
syl2anc |
|
| 22 |
|
reexpcl |
|
| 23 |
16 21 22
|
syl2anc |
|
| 24 |
|
simprrl |
|
| 25 |
|
expge0 |
|
| 26 |
16 21 24 25
|
syl3anc |
|
| 27 |
|
simprrr |
|
| 28 |
16 17 23 26 27
|
lemul2ad |
|
| 29 |
16
|
recnd |
|
| 30 |
|
expp1 |
|
| 31 |
29 21 30
|
syl2anc |
|
| 32 |
23
|
recnd |
|
| 33 |
32
|
mulridd |
|
| 34 |
33
|
eqcomd |
|
| 35 |
28 31 34
|
3brtr4d |
|
| 36 |
|
peano2nn0 |
|
| 37 |
21 36
|
syl |
|
| 38 |
|
reexpcl |
|
| 39 |
16 37 38
|
syl2anc |
|
| 40 |
13
|
ad2antrl |
|
| 41 |
|
letr |
|
| 42 |
39 23 40 41
|
syl3anc |
|
| 43 |
35 42
|
mpand |
|
| 44 |
43
|
ex |
|
| 45 |
44
|
a2d |
|
| 46 |
3 6 9 12 15 45
|
uzind4i |
|
| 47 |
46
|
expd |
|
| 48 |
47
|
com12 |
|
| 49 |
48
|
3impia |
|
| 50 |
49
|
imp |
|