Metamath Proof Explorer


Theorem leexp2r

Description: Weak ordering relationship for exponentiation of a fixed real base in [ 0 , 1 ] to integer exponents. (Contributed by Paul Chapman, 14-Jan-2008) (Revised by Mario Carneiro, 29-Apr-2014)

Ref Expression
Assertion leexp2r AM0NM0AA1ANAM

Proof

Step Hyp Ref Expression
1 oveq2 j=MAj=AM
2 1 breq1d j=MAjAMAMAM
3 2 imbi2d j=MAM00AA1AjAMAM00AA1AMAM
4 oveq2 j=kAj=Ak
5 4 breq1d j=kAjAMAkAM
6 5 imbi2d j=kAM00AA1AjAMAM00AA1AkAM
7 oveq2 j=k+1Aj=Ak+1
8 7 breq1d j=k+1AjAMAk+1AM
9 8 imbi2d j=k+1AM00AA1AjAMAM00AA1Ak+1AM
10 oveq2 j=NAj=AN
11 10 breq1d j=NAjAMANAM
12 11 imbi2d j=NAM00AA1AjAMAM00AA1ANAM
13 reexpcl AM0AM
14 13 adantr AM00AA1AM
15 14 leidd AM00AA1AMAM
16 simprll kMAM00AA1A
17 1red kMAM00AA11
18 simprlr kMAM00AA1M0
19 simpl kMAM00AA1kM
20 eluznn0 M0kMk0
21 18 19 20 syl2anc kMAM00AA1k0
22 reexpcl Ak0Ak
23 16 21 22 syl2anc kMAM00AA1Ak
24 simprrl kMAM00AA10A
25 expge0 Ak00A0Ak
26 16 21 24 25 syl3anc kMAM00AA10Ak
27 simprrr kMAM00AA1A1
28 16 17 23 26 27 lemul2ad kMAM00AA1AkAAk1
29 16 recnd kMAM00AA1A
30 expp1 Ak0Ak+1=AkA
31 29 21 30 syl2anc kMAM00AA1Ak+1=AkA
32 23 recnd kMAM00AA1Ak
33 32 mulridd kMAM00AA1Ak1=Ak
34 33 eqcomd kMAM00AA1Ak=Ak1
35 28 31 34 3brtr4d kMAM00AA1Ak+1Ak
36 peano2nn0 k0k+10
37 21 36 syl kMAM00AA1k+10
38 reexpcl Ak+10Ak+1
39 16 37 38 syl2anc kMAM00AA1Ak+1
40 13 ad2antrl kMAM00AA1AM
41 letr Ak+1AkAMAk+1AkAkAMAk+1AM
42 39 23 40 41 syl3anc kMAM00AA1Ak+1AkAkAMAk+1AM
43 35 42 mpand kMAM00AA1AkAMAk+1AM
44 43 ex kMAM00AA1AkAMAk+1AM
45 44 a2d kMAM00AA1AkAMAM00AA1Ak+1AM
46 3 6 9 12 15 45 uzind4i NMAM00AA1ANAM
47 46 expd NMAM00AA1ANAM
48 47 com12 AM0NM0AA1ANAM
49 48 3impia AM0NM0AA1ANAM
50 49 imp AM0NM0AA1ANAM