Description: Deduce betweenness from "less than" relation. Corresponds loosely to Proposition 6.13 of Schwabhauser p. 45. (Contributed by Thierry Arnoux, 25-Aug-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | legval.p | |
|
legval.d | |
||
legval.i | |
||
legval.l | |
||
legval.g | |
||
legid.a | |
||
legid.b | |
||
legtrd.c | |
||
legtrd.d | |
||
legbtwn.1 | |
||
legbtwn.2 | |
||
Assertion | legbtwn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | legval.p | |
|
2 | legval.d | |
|
3 | legval.i | |
|
4 | legval.l | |
|
5 | legval.g | |
|
6 | legid.a | |
|
7 | legid.b | |
|
8 | legtrd.c | |
|
9 | legtrd.d | |
|
10 | legbtwn.1 | |
|
11 | legbtwn.2 | |
|
12 | simpr | |
|
13 | 5 | adantr | |
14 | 6 | adantr | |
15 | 7 | adantr | |
16 | 8 | adantr | |
17 | simpr | |
|
18 | 1 2 3 13 16 15 14 17 | tgbtwncom | |
19 | 1 2 3 13 15 16 | tgbtwntriv1 | |
20 | 11 | adantr | |
21 | 1 2 3 4 13 16 15 14 17 | btwnleg | |
22 | 1 2 3 4 13 16 14 16 15 20 21 | legtri3 | |
23 | 1 2 3 13 16 14 16 15 22 | tgcgrcomlr | |
24 | eqidd | |
|
25 | 1 2 3 13 14 15 16 15 15 16 18 19 23 24 | tgcgrsub | |
26 | 1 2 3 13 14 15 15 25 | axtgcgrid | |
27 | 26 17 | eqeltrd | |
28 | 26 | oveq2d | |
29 | 27 28 | eleqtrd | |
30 | 12 29 10 | mpjaodan | |