Step |
Hyp |
Ref |
Expression |
1 |
|
legval.p |
|
2 |
|
legval.d |
|
3 |
|
legval.i |
|
4 |
|
legval.l |
|
5 |
|
legval.g |
|
6 |
|
elex |
|
7 |
|
simp1 |
|
8 |
7
|
eqcomd |
|
9 |
|
simp2 |
|
10 |
9
|
eqcomd |
|
11 |
10
|
oveqd |
|
12 |
11
|
eqeq2d |
|
13 |
|
simp3 |
|
14 |
13
|
eqcomd |
|
15 |
14
|
oveqd |
|
16 |
15
|
eleq2d |
|
17 |
10
|
oveqd |
|
18 |
17
|
eqeq2d |
|
19 |
16 18
|
anbi12d |
|
20 |
8 19
|
rexeqbidv |
|
21 |
12 20
|
anbi12d |
|
22 |
8 21
|
rexeqbidv |
|
23 |
8 22
|
rexeqbidv |
|
24 |
1 2 3 23
|
sbcie3s |
|
25 |
24
|
opabbidv |
|
26 |
|
df-leg |
|
27 |
2
|
fvexi |
|
28 |
27
|
imaex |
|
29 |
|
p0ex |
|
30 |
28 29
|
unex |
|
31 |
30
|
a1i |
|
32 |
|
simprr |
|
33 |
|
ovima0 |
|
34 |
33
|
ad5ant14 |
|
35 |
32 34
|
eqeltrd |
|
36 |
|
simpllr |
|
37 |
36
|
simpld |
|
38 |
|
ovima0 |
|
39 |
38
|
ad3antrrr |
|
40 |
37 39
|
eqeltrd |
|
41 |
35 40
|
jca |
|
42 |
|
simprr |
|
43 |
|
eleq1w |
|
44 |
|
oveq2 |
|
45 |
44
|
eqeq2d |
|
46 |
43 45
|
anbi12d |
|
47 |
46
|
cbvrexvw |
|
48 |
42 47
|
sylib |
|
49 |
41 48
|
r19.29a |
|
50 |
49
|
ex |
|
51 |
50
|
rexlimivv |
|
52 |
51
|
adantl |
|
53 |
52
|
simpld |
|
54 |
52
|
simprd |
|
55 |
31 31 53 54
|
opabex2 |
|
56 |
55
|
mptru |
|
57 |
25 26 56
|
fvmpt |
|
58 |
5 6 57
|
3syl |
|
59 |
4 58
|
eqtrid |
|