Metamath Proof Explorer


Theorem leopmuli

Description: The scalar product of a nonnegative real and a positive operator is a positive operator. Exercise 1(ii) of Retherford p. 49. (Contributed by NM, 25-Jul-2006) (New usage is discouraged.)

Ref Expression
Assertion leopmuli A T HrmOp 0 A 0 hop op T 0 hop op A · op T

Proof

Step Hyp Ref Expression
1 hmopre T HrmOp x T x ih x
2 mulge0 A 0 A T x ih x 0 T x ih x 0 A T x ih x
3 1 2 sylanr1 A 0 A T HrmOp x 0 T x ih x 0 A T x ih x
4 3 expr A 0 A T HrmOp x 0 T x ih x 0 A T x ih x
5 4 an4s A T HrmOp 0 A x 0 T x ih x 0 A T x ih x
6 5 anassrs A T HrmOp 0 A x 0 T x ih x 0 A T x ih x
7 recn A A
8 hmopf T HrmOp T :
9 7 8 anim12i A T HrmOp A T :
10 homval A T : x A · op T x = A T x
11 10 3expa A T : x A · op T x = A T x
12 11 oveq1d A T : x A · op T x ih x = A T x ih x
13 simpll A T : x A
14 ffvelrn T : x T x
15 14 adantll A T : x T x
16 simpr A T : x x
17 ax-his3 A T x x A T x ih x = A T x ih x
18 13 15 16 17 syl3anc A T : x A T x ih x = A T x ih x
19 12 18 eqtrd A T : x A · op T x ih x = A T x ih x
20 9 19 sylan A T HrmOp x A · op T x ih x = A T x ih x
21 20 breq2d A T HrmOp x 0 A · op T x ih x 0 A T x ih x
22 21 adantlr A T HrmOp 0 A x 0 A · op T x ih x 0 A T x ih x
23 6 22 sylibrd A T HrmOp 0 A x 0 T x ih x 0 A · op T x ih x
24 23 ralimdva A T HrmOp 0 A x 0 T x ih x x 0 A · op T x ih x
25 24 expimpd A T HrmOp 0 A x 0 T x ih x x 0 A · op T x ih x
26 leoppos T HrmOp 0 hop op T x 0 T x ih x
27 26 adantl A T HrmOp 0 hop op T x 0 T x ih x
28 27 anbi2d A T HrmOp 0 A 0 hop op T 0 A x 0 T x ih x
29 hmopm A T HrmOp A · op T HrmOp
30 leoppos A · op T HrmOp 0 hop op A · op T x 0 A · op T x ih x
31 29 30 syl A T HrmOp 0 hop op A · op T x 0 A · op T x ih x
32 25 28 31 3imtr4d A T HrmOp 0 A 0 hop op T 0 hop op A · op T
33 32 imp A T HrmOp 0 A 0 hop op T 0 hop op A · op T