| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lfgrwlkprop.i |  | 
						
							| 2 |  | wlkv |  | 
						
							| 3 |  | eqid |  | 
						
							| 4 | 3 1 | iswlk |  | 
						
							| 5 | 2 4 | syl |  | 
						
							| 6 |  | ifptru |  | 
						
							| 7 | 6 | adantr |  | 
						
							| 8 |  | simplr |  | 
						
							| 9 |  | wrdsymbcl |  | 
						
							| 10 | 9 | ad4ant14 |  | 
						
							| 11 | 8 10 | ffvelcdmd |  | 
						
							| 12 |  | fveq2 |  | 
						
							| 13 | 12 | breq2d |  | 
						
							| 14 | 13 | elrab |  | 
						
							| 15 |  | fveq2 |  | 
						
							| 16 | 15 | breq2d |  | 
						
							| 17 |  | fvex |  | 
						
							| 18 |  | hashsng |  | 
						
							| 19 | 17 18 | ax-mp |  | 
						
							| 20 | 19 | breq2i |  | 
						
							| 21 |  | 1lt2 |  | 
						
							| 22 |  | 1re |  | 
						
							| 23 |  | 2re |  | 
						
							| 24 | 22 23 | ltnlei |  | 
						
							| 25 |  | pm2.21 |  | 
						
							| 26 | 24 25 | sylbi |  | 
						
							| 27 | 21 26 | ax-mp |  | 
						
							| 28 | 20 27 | sylbi |  | 
						
							| 29 | 16 28 | biimtrdi |  | 
						
							| 30 | 29 | com12 |  | 
						
							| 31 | 30 | adantl |  | 
						
							| 32 | 31 | a1i |  | 
						
							| 33 | 14 32 | biimtrid |  | 
						
							| 34 | 11 33 | mpd |  | 
						
							| 35 | 34 | adantl |  | 
						
							| 36 | 7 35 | sylbid |  | 
						
							| 37 | 36 | ex |  | 
						
							| 38 |  | neqne |  | 
						
							| 39 | 38 | 2a1d |  | 
						
							| 40 | 37 39 | pm2.61i |  | 
						
							| 41 | 40 | ralimdva |  | 
						
							| 42 | 41 | ex |  | 
						
							| 43 | 42 | com23 |  | 
						
							| 44 | 43 | 3impia |  | 
						
							| 45 | 5 44 | biimtrdi |  | 
						
							| 46 | 45 | pm2.43i |  | 
						
							| 47 | 46 | imp |  |