Metamath Proof Explorer


Theorem lfgrwlkprop

Description: Two adjacent vertices in a walk are different in a loop-free graph. (Contributed by AV, 28-Jan-2021)

Ref Expression
Hypothesis lfgrwlkprop.i I=iEdgG
Assertion lfgrwlkprop FWalksGPI:domIx𝒫V|2xk0..^FPkPk+1

Proof

Step Hyp Ref Expression
1 lfgrwlkprop.i I=iEdgG
2 wlkv FWalksGPGVFVPV
3 eqid VtxG=VtxG
4 3 1 iswlk GVFVPVFWalksGPFWorddomIP:0FVtxGk0..^Fif-Pk=Pk+1IFk=PkPkPk+1IFk
5 2 4 syl FWalksGPFWalksGPFWorddomIP:0FVtxGk0..^Fif-Pk=Pk+1IFk=PkPkPk+1IFk
6 ifptru Pk=Pk+1if-Pk=Pk+1IFk=PkPkPk+1IFkIFk=Pk
7 6 adantr Pk=Pk+1FWorddomIP:0FVtxGI:domIx𝒫V|2xk0..^Fif-Pk=Pk+1IFk=PkPkPk+1IFkIFk=Pk
8 simplr FWorddomIP:0FVtxGI:domIx𝒫V|2xk0..^FI:domIx𝒫V|2x
9 wrdsymbcl FWorddomIk0..^FFkdomI
10 9 ad4ant14 FWorddomIP:0FVtxGI:domIx𝒫V|2xk0..^FFkdomI
11 8 10 ffvelcdmd FWorddomIP:0FVtxGI:domIx𝒫V|2xk0..^FIFkx𝒫V|2x
12 fveq2 x=IFkx=IFk
13 12 breq2d x=IFk2x2IFk
14 13 elrab IFkx𝒫V|2xIFk𝒫V2IFk
15 fveq2 IFk=PkIFk=Pk
16 15 breq2d IFk=Pk2IFk2Pk
17 fvex PkV
18 hashsng PkVPk=1
19 17 18 ax-mp Pk=1
20 19 breq2i 2Pk21
21 1lt2 1<2
22 1re 1
23 2re 2
24 22 23 ltnlei 1<2¬21
25 pm2.21 ¬2121PkPk+1
26 24 25 sylbi 1<221PkPk+1
27 21 26 ax-mp 21PkPk+1
28 20 27 sylbi 2PkPkPk+1
29 16 28 syl6bi IFk=Pk2IFkPkPk+1
30 29 com12 2IFkIFk=PkPkPk+1
31 30 adantl IFk𝒫V2IFkIFk=PkPkPk+1
32 31 a1i FWorddomIP:0FVtxGI:domIx𝒫V|2xk0..^FIFk𝒫V2IFkIFk=PkPkPk+1
33 14 32 biimtrid FWorddomIP:0FVtxGI:domIx𝒫V|2xk0..^FIFkx𝒫V|2xIFk=PkPkPk+1
34 11 33 mpd FWorddomIP:0FVtxGI:domIx𝒫V|2xk0..^FIFk=PkPkPk+1
35 34 adantl Pk=Pk+1FWorddomIP:0FVtxGI:domIx𝒫V|2xk0..^FIFk=PkPkPk+1
36 7 35 sylbid Pk=Pk+1FWorddomIP:0FVtxGI:domIx𝒫V|2xk0..^Fif-Pk=Pk+1IFk=PkPkPk+1IFkPkPk+1
37 36 ex Pk=Pk+1FWorddomIP:0FVtxGI:domIx𝒫V|2xk0..^Fif-Pk=Pk+1IFk=PkPkPk+1IFkPkPk+1
38 neqne ¬Pk=Pk+1PkPk+1
39 38 2a1d ¬Pk=Pk+1FWorddomIP:0FVtxGI:domIx𝒫V|2xk0..^Fif-Pk=Pk+1IFk=PkPkPk+1IFkPkPk+1
40 37 39 pm2.61i FWorddomIP:0FVtxGI:domIx𝒫V|2xk0..^Fif-Pk=Pk+1IFk=PkPkPk+1IFkPkPk+1
41 40 ralimdva FWorddomIP:0FVtxGI:domIx𝒫V|2xk0..^Fif-Pk=Pk+1IFk=PkPkPk+1IFkk0..^FPkPk+1
42 41 ex FWorddomIP:0FVtxGI:domIx𝒫V|2xk0..^Fif-Pk=Pk+1IFk=PkPkPk+1IFkk0..^FPkPk+1
43 42 com23 FWorddomIP:0FVtxGk0..^Fif-Pk=Pk+1IFk=PkPkPk+1IFkI:domIx𝒫V|2xk0..^FPkPk+1
44 43 3impia FWorddomIP:0FVtxGk0..^Fif-Pk=Pk+1IFk=PkPkPk+1IFkI:domIx𝒫V|2xk0..^FPkPk+1
45 5 44 syl6bi FWalksGPFWalksGPI:domIx𝒫V|2xk0..^FPkPk+1
46 45 pm2.43i FWalksGPI:domIx𝒫V|2xk0..^FPkPk+1
47 46 imp FWalksGPI:domIx𝒫V|2xk0..^FPkPk+1