Metamath Proof Explorer


Theorem lfuhgr2

Description: A hypergraph is loop-free if and only if every edge is not a loop. (Contributed by BTernaryTau, 15-Oct-2023)

Ref Expression
Hypotheses lfuhgr.1 V=VtxG
lfuhgr.2 I=iEdgG
Assertion lfuhgr2 GUHGraphI:domIx𝒫V|2xxEdgGx1

Proof

Step Hyp Ref Expression
1 lfuhgr.1 V=VtxG
2 lfuhgr.2 I=iEdgG
3 1 2 lfuhgr GUHGraphI:domIx𝒫V|2xxEdgG2x
4 uhgredgn0 GUHGraphxEdgGx𝒫VtxG
5 eldifsni x𝒫VtxGx
6 4 5 syl GUHGraphxEdgGx
7 hashneq0 xV0<xx
8 7 elv 0<xx
9 6 8 sylibr GUHGraphxEdgG0<x
10 9 gt0ne0d GUHGraphxEdgGx0
11 hashxnn0 xVx0*
12 11 elv x0*
13 xnn0n0n1ge2b x0*x0x12x
14 12 13 ax-mp x0x12x
15 14 biimpi x0x12x
16 10 15 stoic3 GUHGraphxEdgGx12x
17 16 3exp GUHGraphxEdgGx12x
18 17 a2d GUHGraphxEdgGx1xEdgG2x
19 18 ralimdv2 GUHGraphxEdgGx1xEdgG2x
20 1xr 1*
21 hashxrcl xVx*
22 21 elv x*
23 1lt2 1<2
24 2re 2
25 24 rexri 2*
26 xrltletr 1*2*x*1<22x1<x
27 20 25 22 26 mp3an 1<22x1<x
28 23 27 mpan 2x1<x
29 xrltne 1*x*1<xx1
30 20 22 28 29 mp3an12i 2xx1
31 30 ralimi xEdgG2xxEdgGx1
32 19 31 impbid1 GUHGraphxEdgGx1xEdgG2x
33 3 32 bitr4d GUHGraphI:domIx𝒫V|2xxEdgGx1