Description: Lemma for lgsfcl2 . (Contributed by Mario Carneiro, 4-Feb-2015) (Proof shortened by AV, 19-Mar-2022)
Ref | Expression | ||
---|---|---|---|
Hypothesis | lgslem2.z | |
|
Assertion | lgslem4 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lgslem2.z | |
|
2 | eldifi | |
|
3 | 2 | adantl | |
4 | simpl | |
|
5 | oddprm | |
|
6 | 5 | adantl | |
7 | prmdvdsexp | |
|
8 | 3 4 6 7 | syl3anc | |
9 | 8 | biimpar | |
10 | prmgt1 | |
|
11 | 2 10 | syl | |
12 | 11 | ad2antlr | |
13 | p1modz1 | |
|
14 | 9 12 13 | syl2anc | |
15 | 14 | oveq1d | |
16 | 1m1e0 | |
|
17 | 1 | lgslem2 | |
18 | 17 | simp2i | |
19 | 16 18 | eqeltri | |
20 | 15 19 | eqeltrdi | |
21 | lgslem1 | |
|
22 | elpri | |
|
23 | oveq1 | |
|
24 | df-neg | |
|
25 | 17 | simp1i | |
26 | 24 25 | eqeltrri | |
27 | 23 26 | eqeltrdi | |
28 | oveq1 | |
|
29 | 2m1e1 | |
|
30 | 17 | simp3i | |
31 | 29 30 | eqeltri | |
32 | 28 31 | eqeltrdi | |
33 | 27 32 | jaoi | |
34 | 21 22 33 | 3syl | |
35 | 34 | 3expa | |
36 | 20 35 | pm2.61dan | |