Description: If the Legendre symbol of an integer A for an odd prime is 1 , then the number is a quadratic residue mod P with a solution x of the congruence ( x ^ 2 ) == A (mod P ) which is not divisible by the prime. (Contributed by AV, 20-Aug-2021) (Proof shortened by AV, 18-Mar-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | lgsqrmodndvds | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lgsqrmod | |
|
2 | 1 | imp | |
3 | eldifi | |
|
4 | prmnn | |
|
5 | 3 4 | syl | |
6 | 5 | ad3antlr | |
7 | zsqcl | |
|
8 | 7 | adantl | |
9 | simplll | |
|
10 | moddvds | |
|
11 | 6 8 9 10 | syl3anc | |
12 | 5 | nnzd | |
13 | 12 | ad3antlr | |
14 | 13 8 9 | 3jca | |
15 | 14 | adantl | |
16 | dvdssub2 | |
|
17 | 15 16 | sylan | |
18 | 17 | ex | |
19 | bicom | |
|
20 | 3 | ad3antlr | |
21 | simpr | |
|
22 | 2nn | |
|
23 | 22 | a1i | |
24 | prmdvdsexp | |
|
25 | 20 21 23 24 | syl3anc | |
26 | 25 | biimparc | |
27 | bianir | |
|
28 | 5 | ad2antlr | |
29 | dvdsmod0 | |
|
30 | 29 | ex | |
31 | 28 30 | syl | |
32 | lgsprme0 | |
|
33 | 3 32 | sylan2 | |
34 | eqeq1 | |
|
35 | 0ne1 | |
|
36 | eqneqall | |
|
37 | 35 36 | mpi | |
38 | 34 37 | syl6bi | |
39 | 33 38 | syl6bir | |
40 | 39 | com23 | |
41 | 40 | imp | |
42 | 31 41 | syld | |
43 | 42 | ad2antrl | |
44 | 27 43 | syl5com | |
45 | 44 | ex | |
46 | 45 | com23 | |
47 | 26 46 | mpcom | |
48 | 19 47 | biimtrid | |
49 | 18 48 | syld | |
50 | 49 | ex | |
51 | 2a1 | |
|
52 | 50 51 | pm2.61i | |
53 | 11 52 | sylbid | |
54 | 53 | ancld | |
55 | 54 | reximdva | |
56 | 2 55 | mpd | |
57 | 56 | ex | |