Metamath Proof Explorer


Theorem limcfval

Description: Value and set bounds on the limit operator. (Contributed by Mario Carneiro, 25-Dec-2016)

Ref Expression
Hypotheses limcval.j J=K𝑡AB
limcval.k K=TopOpenfld
Assertion limcfval F:AABFlimB=y|zABifz=ByFzJCnPKBFlimB

Proof

Step Hyp Ref Expression
1 limcval.j J=K𝑡AB
2 limcval.k K=TopOpenfld
3 df-limc lim=f𝑝𝑚,xy|[˙TopOpenfld/j]˙zdomfxifz=xyfzj𝑡domfxCnPjx
4 3 a1i F:AABlim=f𝑝𝑚,xy|[˙TopOpenfld/j]˙zdomfxifz=xyfzj𝑡domfxCnPjx
5 fvexd F:AABf=Fx=BTopOpenfldV
6 simplrl F:AABf=Fx=Bj=TopOpenfldf=F
7 6 dmeqd F:AABf=Fx=Bj=TopOpenflddomf=domF
8 simpll1 F:AABf=Fx=Bj=TopOpenfldF:A
9 8 fdmd F:AABf=Fx=Bj=TopOpenflddomF=A
10 7 9 eqtrd F:AABf=Fx=Bj=TopOpenflddomf=A
11 simplrr F:AABf=Fx=Bj=TopOpenfldx=B
12 11 sneqd F:AABf=Fx=Bj=TopOpenfldx=B
13 10 12 uneq12d F:AABf=Fx=Bj=TopOpenflddomfx=AB
14 11 eqeq2d F:AABf=Fx=Bj=TopOpenfldz=xz=B
15 6 fveq1d F:AABf=Fx=Bj=TopOpenfldfz=Fz
16 14 15 ifbieq2d F:AABf=Fx=Bj=TopOpenfldifz=xyfz=ifz=ByFz
17 13 16 mpteq12dv F:AABf=Fx=Bj=TopOpenfldzdomfxifz=xyfz=zABifz=ByFz
18 simpr F:AABf=Fx=Bj=TopOpenfldj=TopOpenfld
19 18 2 eqtr4di F:AABf=Fx=Bj=TopOpenfldj=K
20 19 13 oveq12d F:AABf=Fx=Bj=TopOpenfldj𝑡domfx=K𝑡AB
21 20 1 eqtr4di F:AABf=Fx=Bj=TopOpenfldj𝑡domfx=J
22 21 19 oveq12d F:AABf=Fx=Bj=TopOpenfldj𝑡domfxCnPj=JCnPK
23 22 11 fveq12d F:AABf=Fx=Bj=TopOpenfldj𝑡domfxCnPjx=JCnPKB
24 17 23 eleq12d F:AABf=Fx=Bj=TopOpenfldzdomfxifz=xyfzj𝑡domfxCnPjxzABifz=ByFzJCnPKB
25 5 24 sbcied F:AABf=Fx=B[˙TopOpenfld/j]˙zdomfxifz=xyfzj𝑡domfxCnPjxzABifz=ByFzJCnPKB
26 25 abbidv F:AABf=Fx=By|[˙TopOpenfld/j]˙zdomfxifz=xyfzj𝑡domfxCnPjx=y|zABifz=ByFzJCnPKB
27 cnex V
28 elpm2r VVF:AAF𝑝𝑚
29 27 27 28 mpanl12 F:AAF𝑝𝑚
30 29 3adant3 F:AABF𝑝𝑚
31 simp3 F:AABB
32 eqid zABifz=ByFz=zABifz=ByFz
33 1 2 32 limcvallem F:AABzABifz=ByFzJCnPKBy
34 33 abssdv F:AABy|zABifz=ByFzJCnPKB
35 27 ssex y|zABifz=ByFzJCnPKBy|zABifz=ByFzJCnPKBV
36 34 35 syl F:AABy|zABifz=ByFzJCnPKBV
37 4 26 30 31 36 ovmpod F:AABFlimB=y|zABifz=ByFzJCnPKB
38 37 34 eqsstrd F:AABFlimB
39 37 38 jca F:AABFlimB=y|zABifz=ByFzJCnPKBFlimB