Metamath Proof Explorer


Theorem limcun

Description: A point is a limit of F on A u. B iff it is the limit of the restriction of F to A and to B . (Contributed by Mario Carneiro, 30-Dec-2016)

Ref Expression
Hypotheses limcun.1 φA
limcun.2 φB
limcun.3 φF:AB
Assertion limcun φFlimC=FAlimCFBlimC

Proof

Step Hyp Ref Expression
1 limcun.1 φA
2 limcun.2 φB
3 limcun.3 φF:AB
4 limcrcl xFlimCF:domFdomFC
5 4 simp3d xFlimCC
6 5 a1i φxFlimCC
7 elinel1 xFAlimCFBlimCxFAlimC
8 limcrcl xFAlimCFA:domFAdomFAC
9 8 simp3d xFAlimCC
10 7 9 syl xFAlimCFBlimCC
11 10 a1i φxFAlimCFBlimCC
12 prfi ABFin
13 12 a1i φCABFin
14 1 adantr φCA
15 2 adantr φCB
16 cnex V
17 16 ssex AAV
18 14 17 syl φCAV
19 16 ssex BBV
20 15 19 syl φCBV
21 sseq1 y=AyA
22 sseq1 y=ByB
23 21 22 ralprg AVBVyAByAB
24 18 20 23 syl2anc φCyAByAB
25 14 15 24 mpbir2and φCyABy
26 3 adantr φCF:AB
27 uniiun AB=yABy
28 uniprg AVBVAB=AB
29 18 20 28 syl2anc φCAB=AB
30 27 29 eqtr3id φCyABy=AB
31 30 feq2d φCF:yAByF:AB
32 26 31 mpbird φCF:yABy
33 simpr φCC
34 13 25 32 33 limciun φCFlimC=yABFylimC
35 34 eleq2d φCxFlimCxyABFylimC
36 reseq2 y=AFy=FA
37 36 oveq1d y=AFylimC=FAlimC
38 37 eleq2d y=AxFylimCxFAlimC
39 reseq2 y=BFy=FB
40 39 oveq1d y=BFylimC=FBlimC
41 40 eleq2d y=BxFylimCxFBlimC
42 38 41 ralprg AVBVyABxFylimCxFAlimCxFBlimC
43 18 20 42 syl2anc φCyABxFylimCxFAlimCxFBlimC
44 43 anbi2d φCxyABxFylimCxxFAlimCxFBlimC
45 limccl FAlimC
46 45 sseli xFAlimCx
47 46 adantr xFAlimCxFBlimCx
48 47 pm4.71ri xFAlimCxFBlimCxxFAlimCxFBlimC
49 44 48 bitr4di φCxyABxFylimCxFAlimCxFBlimC
50 elriin xyABFylimCxyABxFylimC
51 elin xFAlimCFBlimCxFAlimCxFBlimC
52 49 50 51 3bitr4g φCxyABFylimCxFAlimCFBlimC
53 35 52 bitrd φCxFlimCxFAlimCFBlimC
54 53 ex φCxFlimCxFAlimCFBlimC
55 6 11 54 pm5.21ndd φxFlimCxFAlimCFBlimC
56 55 eqrdv φFlimC=FAlimCFBlimC