Description: A point is a limit of F on A u. B iff it is the limit of the restriction of F to A and to B . (Contributed by Mario Carneiro, 30-Dec-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | limcun.1 | |
|
limcun.2 | |
||
limcun.3 | |
||
Assertion | limcun | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limcun.1 | |
|
2 | limcun.2 | |
|
3 | limcun.3 | |
|
4 | limcrcl | |
|
5 | 4 | simp3d | |
6 | 5 | a1i | |
7 | elinel1 | |
|
8 | limcrcl | |
|
9 | 8 | simp3d | |
10 | 7 9 | syl | |
11 | 10 | a1i | |
12 | prfi | |
|
13 | 12 | a1i | |
14 | 1 | adantr | |
15 | 2 | adantr | |
16 | cnex | |
|
17 | 16 | ssex | |
18 | 14 17 | syl | |
19 | 16 | ssex | |
20 | 15 19 | syl | |
21 | sseq1 | |
|
22 | sseq1 | |
|
23 | 21 22 | ralprg | |
24 | 18 20 23 | syl2anc | |
25 | 14 15 24 | mpbir2and | |
26 | 3 | adantr | |
27 | uniiun | |
|
28 | uniprg | |
|
29 | 18 20 28 | syl2anc | |
30 | 27 29 | eqtr3id | |
31 | 30 | feq2d | |
32 | 26 31 | mpbird | |
33 | simpr | |
|
34 | 13 25 32 33 | limciun | |
35 | 34 | eleq2d | |
36 | reseq2 | |
|
37 | 36 | oveq1d | |
38 | 37 | eleq2d | |
39 | reseq2 | |
|
40 | 39 | oveq1d | |
41 | 40 | eleq2d | |
42 | 38 41 | ralprg | |
43 | 18 20 42 | syl2anc | |
44 | 43 | anbi2d | |
45 | limccl | |
|
46 | 45 | sseli | |
47 | 46 | adantr | |
48 | 47 | pm4.71ri | |
49 | 44 48 | bitr4di | |
50 | elriin | |
|
51 | elin | |
|
52 | 49 50 51 | 3bitr4g | |
53 | 35 52 | bitrd | |
54 | 53 | ex | |
55 | 6 11 54 | pm5.21ndd | |
56 | 55 | eqrdv | |