Metamath Proof Explorer


Theorem liminfgord

Description: Ordering property of the inferior limit function. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Assertion liminfgord ABABsupFA+∞**<supFB+∞**<

Proof

Step Hyp Ref Expression
1 inss2 FA+∞**
2 1 a1i ABABxFB+∞*FA+∞**
3 rexr AA*
4 3 3ad2ant1 ABABA*
5 simp3 ABABAB
6 df-ico .=x*,y*z*|xzz<y
7 xrletr A*B*w*ABBwAw
8 6 6 7 ixxss1 A*ABB+∞A+∞
9 4 5 8 syl2anc ABABB+∞A+∞
10 imass2 B+∞A+∞FB+∞FA+∞
11 ssrin FB+∞FA+∞FB+∞*FA+∞*
12 9 10 11 3syl ABABFB+∞*FA+∞*
13 12 sselda ABABxFB+∞*xFA+∞*
14 infxrlb FA+∞**xFA+∞*supFA+∞**<x
15 2 13 14 syl2anc ABABxFB+∞*supFA+∞**<x
16 15 ralrimiva ABABxFB+∞*supFA+∞**<x
17 inss2 FB+∞**
18 infxrcl FA+∞**supFA+∞**<*
19 1 18 ax-mp supFA+∞**<*
20 infxrgelb FB+∞**supFA+∞**<*supFA+∞**<supFB+∞**<xFB+∞*supFA+∞**<x
21 17 19 20 mp2an supFA+∞**<supFB+∞**<xFB+∞*supFA+∞**<x
22 16 21 sylibr ABABsupFA+∞**<supFB+∞**<