Metamath Proof Explorer


Theorem liminfreuz

Description: Given a function on the reals, its inferior limit is real if and only if two condition holds: 1. there is a real number that is greater than or equal to the function, infinitely often; 2. there is a real number that is smaller than or equal to the function. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses liminfreuz.1 _ j F
liminfreuz.2 φ M
liminfreuz.3 Z = M
liminfreuz.4 φ F : Z
Assertion liminfreuz φ lim inf F x k Z j k F j x x j Z x F j

Proof

Step Hyp Ref Expression
1 liminfreuz.1 _ j F
2 liminfreuz.2 φ M
3 liminfreuz.3 Z = M
4 liminfreuz.4 φ F : Z
5 nfcv _ l F
6 5 2 3 4 liminfreuzlem φ lim inf F y i Z l i F l y y l Z y F l
7 breq2 y = x F l y F l x
8 7 rexbidv y = x l i F l y l i F l x
9 8 ralbidv y = x i Z l i F l y i Z l i F l x
10 fveq2 i = k i = k
11 10 rexeqdv i = k l i F l x l k F l x
12 nfcv _ j l
13 1 12 nffv _ j F l
14 nfcv _ j
15 nfcv _ j x
16 13 14 15 nfbr j F l x
17 nfv l F j x
18 fveq2 l = j F l = F j
19 18 breq1d l = j F l x F j x
20 16 17 19 cbvrexw l k F l x j k F j x
21 20 a1i i = k l k F l x j k F j x
22 11 21 bitrd i = k l i F l x j k F j x
23 22 cbvralvw i Z l i F l x k Z j k F j x
24 23 a1i y = x i Z l i F l x k Z j k F j x
25 9 24 bitrd y = x i Z l i F l y k Z j k F j x
26 25 cbvrexvw y i Z l i F l y x k Z j k F j x
27 breq1 y = x y F l x F l
28 27 ralbidv y = x l Z y F l l Z x F l
29 15 14 13 nfbr j x F l
30 nfv l x F j
31 18 breq2d l = j x F l x F j
32 29 30 31 cbvralw l Z x F l j Z x F j
33 32 a1i y = x l Z x F l j Z x F j
34 28 33 bitrd y = x l Z y F l j Z x F j
35 34 cbvrexvw y l Z y F l x j Z x F j
36 26 35 anbi12i y i Z l i F l y y l Z y F l x k Z j k F j x x j Z x F j
37 36 a1i φ y i Z l i F l y y l Z y F l x k Z j k F j x x j Z x F j
38 6 37 bitrd φ lim inf F x k Z j k F j x x j Z x F j