Description: Given a function on the reals, its inferior limit is real if and only if two condition holds: 1. there is a real number that is greater than or equal to the function, infinitely often; 2. there is a real number that is smaller than or equal to the function. (Contributed by Glauco Siliprandi, 2-Jan-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | liminfreuz.1 | |
|
liminfreuz.2 | |
||
liminfreuz.3 | |
||
liminfreuz.4 | |
||
Assertion | liminfreuz | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | liminfreuz.1 | |
|
2 | liminfreuz.2 | |
|
3 | liminfreuz.3 | |
|
4 | liminfreuz.4 | |
|
5 | nfcv | |
|
6 | 5 2 3 4 | liminfreuzlem | |
7 | breq2 | |
|
8 | 7 | rexbidv | |
9 | 8 | ralbidv | |
10 | fveq2 | |
|
11 | 10 | rexeqdv | |
12 | nfcv | |
|
13 | 1 12 | nffv | |
14 | nfcv | |
|
15 | nfcv | |
|
16 | 13 14 15 | nfbr | |
17 | nfv | |
|
18 | fveq2 | |
|
19 | 18 | breq1d | |
20 | 16 17 19 | cbvrexw | |
21 | 20 | a1i | |
22 | 11 21 | bitrd | |
23 | 22 | cbvralvw | |
24 | 23 | a1i | |
25 | 9 24 | bitrd | |
26 | 25 | cbvrexvw | |
27 | breq1 | |
|
28 | 27 | ralbidv | |
29 | 15 14 13 | nfbr | |
30 | nfv | |
|
31 | 18 | breq2d | |
32 | 29 30 31 | cbvralw | |
33 | 32 | a1i | |
34 | 28 33 | bitrd | |
35 | 34 | cbvrexvw | |
36 | 26 35 | anbi12i | |
37 | 36 | a1i | |
38 | 6 37 | bitrd | |