Metamath Proof Explorer


Theorem liminfreuz

Description: Given a function on the reals, its inferior limit is real if and only if two condition holds: 1. there is a real number that is greater than or equal to the function, infinitely often; 2. there is a real number that is smaller than or equal to the function. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses liminfreuz.1 _jF
liminfreuz.2 φM
liminfreuz.3 Z=M
liminfreuz.4 φF:Z
Assertion liminfreuz φlim infFxkZjkFjxxjZxFj

Proof

Step Hyp Ref Expression
1 liminfreuz.1 _jF
2 liminfreuz.2 φM
3 liminfreuz.3 Z=M
4 liminfreuz.4 φF:Z
5 nfcv _lF
6 5 2 3 4 liminfreuzlem φlim infFyiZliFlyylZyFl
7 breq2 y=xFlyFlx
8 7 rexbidv y=xliFlyliFlx
9 8 ralbidv y=xiZliFlyiZliFlx
10 fveq2 i=ki=k
11 10 rexeqdv i=kliFlxlkFlx
12 nfcv _jl
13 1 12 nffv _jFl
14 nfcv _j
15 nfcv _jx
16 13 14 15 nfbr jFlx
17 nfv lFjx
18 fveq2 l=jFl=Fj
19 18 breq1d l=jFlxFjx
20 16 17 19 cbvrexw lkFlxjkFjx
21 20 a1i i=klkFlxjkFjx
22 11 21 bitrd i=kliFlxjkFjx
23 22 cbvralvw iZliFlxkZjkFjx
24 23 a1i y=xiZliFlxkZjkFjx
25 9 24 bitrd y=xiZliFlykZjkFjx
26 25 cbvrexvw yiZliFlyxkZjkFjx
27 breq1 y=xyFlxFl
28 27 ralbidv y=xlZyFllZxFl
29 15 14 13 nfbr jxFl
30 nfv lxFj
31 18 breq2d l=jxFlxFj
32 29 30 31 cbvralw lZxFljZxFj
33 32 a1i y=xlZxFljZxFj
34 28 33 bitrd y=xlZyFljZxFj
35 34 cbvrexvw ylZyFlxjZxFj
36 26 35 anbi12i yiZliFlyylZyFlxkZjkFjxxjZxFj
37 36 a1i φyiZliFlyylZyFlxkZjkFjxxjZxFj
38 6 37 bitrd φlim infFxkZjkFjxxjZxFj