Description: Given a function on the extended reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is smaller than the function, at some point, in any upper part of the reals; 2. there is a real number that is eventually larger than the function. (Contributed by Glauco Siliprandi, 23-Oct-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | limsupre2mpt.p | |
|
limsupre2mpt.a | |
||
limsupre2mpt.b | |
||
Assertion | limsupre2mpt | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limsupre2mpt.p | |
|
2 | limsupre2mpt.a | |
|
3 | limsupre2mpt.b | |
|
4 | nfmpt1 | |
|
5 | 1 3 | fmptd2f | |
6 | 4 2 5 | limsupre2 | |
7 | eqid | |
|
8 | 7 | a1i | |
9 | 8 3 | fvmpt2d | |
10 | 9 | breq2d | |
11 | 10 | anbi2d | |
12 | 1 11 | rexbida | |
13 | 12 | ralbidv | |
14 | 13 | rexbidv | |
15 | 9 | breq1d | |
16 | 15 | imbi2d | |
17 | 1 16 | ralbida | |
18 | 17 | rexbidv | |
19 | 18 | rexbidv | |
20 | 14 19 | anbi12d | |
21 | breq1 | |
|
22 | 21 | anbi2d | |
23 | 22 | rexbidv | |
24 | 23 | ralbidv | |
25 | breq1 | |
|
26 | 25 | anbi1d | |
27 | 26 | rexbidv | |
28 | 27 | cbvralvw | |
29 | 28 | a1i | |
30 | 24 29 | bitrd | |
31 | 30 | cbvrexvw | |
32 | breq2 | |
|
33 | 32 | imbi2d | |
34 | 33 | ralbidv | |
35 | 34 | rexbidv | |
36 | 25 | imbi1d | |
37 | 36 | ralbidv | |
38 | 37 | cbvrexvw | |
39 | 38 | a1i | |
40 | 35 39 | bitrd | |
41 | 40 | cbvrexvw | |
42 | 31 41 | anbi12i | |
43 | 42 | a1i | |
44 | 6 20 43 | 3bitrd | |