Metamath Proof Explorer


Theorem limsupre2mpt

Description: Given a function on the extended reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is smaller than the function, at some point, in any upper part of the reals; 2. there is a real number that is eventually larger than the function. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses limsupre2mpt.p xφ
limsupre2mpt.a φA
limsupre2mpt.b φxAB*
Assertion limsupre2mpt φlim supxABykxAkxy<BykxAkxB<y

Proof

Step Hyp Ref Expression
1 limsupre2mpt.p xφ
2 limsupre2mpt.a φA
3 limsupre2mpt.b φxAB*
4 nfmpt1 _xxAB
5 1 3 fmptd2f φxAB:A*
6 4 2 5 limsupre2 φlim supxABwjxAjxw<xABxwjxAjxxABx<w
7 eqid xAB=xAB
8 7 a1i φxAB=xAB
9 8 3 fvmpt2d φxAxABx=B
10 9 breq2d φxAw<xABxw<B
11 10 anbi2d φxAjxw<xABxjxw<B
12 1 11 rexbida φxAjxw<xABxxAjxw<B
13 12 ralbidv φjxAjxw<xABxjxAjxw<B
14 13 rexbidv φwjxAjxw<xABxwjxAjxw<B
15 9 breq1d φxAxABx<wB<w
16 15 imbi2d φxAjxxABx<wjxB<w
17 1 16 ralbida φxAjxxABx<wxAjxB<w
18 17 rexbidv φjxAjxxABx<wjxAjxB<w
19 18 rexbidv φwjxAjxxABx<wwjxAjxB<w
20 14 19 anbi12d φwjxAjxw<xABxwjxAjxxABx<wwjxAjxw<BwjxAjxB<w
21 breq1 w=yw<By<B
22 21 anbi2d w=yjxw<Bjxy<B
23 22 rexbidv w=yxAjxw<BxAjxy<B
24 23 ralbidv w=yjxAjxw<BjxAjxy<B
25 breq1 j=kjxkx
26 25 anbi1d j=kjxy<Bkxy<B
27 26 rexbidv j=kxAjxy<BxAkxy<B
28 27 cbvralvw jxAjxy<BkxAkxy<B
29 28 a1i w=yjxAjxy<BkxAkxy<B
30 24 29 bitrd w=yjxAjxw<BkxAkxy<B
31 30 cbvrexvw wjxAjxw<BykxAkxy<B
32 breq2 w=yB<wB<y
33 32 imbi2d w=yjxB<wjxB<y
34 33 ralbidv w=yxAjxB<wxAjxB<y
35 34 rexbidv w=yjxAjxB<wjxAjxB<y
36 25 imbi1d j=kjxB<ykxB<y
37 36 ralbidv j=kxAjxB<yxAkxB<y
38 37 cbvrexvw jxAjxB<ykxAkxB<y
39 38 a1i w=yjxAjxB<ykxAkxB<y
40 35 39 bitrd w=yjxAjxB<wkxAkxB<y
41 40 cbvrexvw wjxAjxB<wykxAkxB<y
42 31 41 anbi12i wjxAjxw<BwjxAjxB<wykxAkxy<BykxAkxB<y
43 42 a1i φwjxAjxw<BwjxAjxB<wykxAkxy<BykxAkxB<y
44 6 20 43 3bitrd φlim supxABykxAkxy<BykxAkxB<y