Metamath Proof Explorer


Theorem limsupre2mpt

Description: Given a function on the extended reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is smaller than the function, at some point, in any upper part of the reals; 2. there is a real number that is eventually larger than the function. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses limsupre2mpt.p x φ
limsupre2mpt.a φ A
limsupre2mpt.b φ x A B *
Assertion limsupre2mpt φ lim sup x A B y k x A k x y < B y k x A k x B < y

Proof

Step Hyp Ref Expression
1 limsupre2mpt.p x φ
2 limsupre2mpt.a φ A
3 limsupre2mpt.b φ x A B *
4 nfmpt1 _ x x A B
5 1 3 fmptd2f φ x A B : A *
6 4 2 5 limsupre2 φ lim sup x A B w j x A j x w < x A B x w j x A j x x A B x < w
7 eqid x A B = x A B
8 7 a1i φ x A B = x A B
9 8 3 fvmpt2d φ x A x A B x = B
10 9 breq2d φ x A w < x A B x w < B
11 10 anbi2d φ x A j x w < x A B x j x w < B
12 1 11 rexbida φ x A j x w < x A B x x A j x w < B
13 12 ralbidv φ j x A j x w < x A B x j x A j x w < B
14 13 rexbidv φ w j x A j x w < x A B x w j x A j x w < B
15 9 breq1d φ x A x A B x < w B < w
16 15 imbi2d φ x A j x x A B x < w j x B < w
17 1 16 ralbida φ x A j x x A B x < w x A j x B < w
18 17 rexbidv φ j x A j x x A B x < w j x A j x B < w
19 18 rexbidv φ w j x A j x x A B x < w w j x A j x B < w
20 14 19 anbi12d φ w j x A j x w < x A B x w j x A j x x A B x < w w j x A j x w < B w j x A j x B < w
21 breq1 w = y w < B y < B
22 21 anbi2d w = y j x w < B j x y < B
23 22 rexbidv w = y x A j x w < B x A j x y < B
24 23 ralbidv w = y j x A j x w < B j x A j x y < B
25 breq1 j = k j x k x
26 25 anbi1d j = k j x y < B k x y < B
27 26 rexbidv j = k x A j x y < B x A k x y < B
28 27 cbvralvw j x A j x y < B k x A k x y < B
29 28 a1i w = y j x A j x y < B k x A k x y < B
30 24 29 bitrd w = y j x A j x w < B k x A k x y < B
31 30 cbvrexvw w j x A j x w < B y k x A k x y < B
32 breq2 w = y B < w B < y
33 32 imbi2d w = y j x B < w j x B < y
34 33 ralbidv w = y x A j x B < w x A j x B < y
35 34 rexbidv w = y j x A j x B < w j x A j x B < y
36 25 imbi1d j = k j x B < y k x B < y
37 36 ralbidv j = k x A j x B < y x A k x B < y
38 37 cbvrexvw j x A j x B < y k x A k x B < y
39 38 a1i w = y j x A j x B < y k x A k x B < y
40 35 39 bitrd w = y j x A j x B < w k x A k x B < y
41 40 cbvrexvw w j x A j x B < w y k x A k x B < y
42 31 41 anbi12i w j x A j x w < B w j x A j x B < w y k x A k x y < B y k x A k x B < y
43 42 a1i φ w j x A j x w < B w j x A j x B < w y k x A k x y < B y k x A k x B < y
44 6 20 43 3bitrd φ lim sup x A B y k x A k x y < B y k x A k x B < y