Metamath Proof Explorer


Theorem limsupre3lem

Description: Given a function on the extended reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is less than or equal to the function, at some point, in any upper part of the reals; 2. there is a real number that is eventually greater than or equal to the function. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses limsupre3lem.1 _jF
limsupre3lem.2 φA
limsupre3lem.3 φF:A*
Assertion limsupre3lem φlim supFxkjAkjxFjxkjAkjFjx

Proof

Step Hyp Ref Expression
1 limsupre3lem.1 _jF
2 limsupre3lem.2 φA
3 limsupre3lem.3 φF:A*
4 1 2 3 limsupre2 φlim supFykjAkjy<FjykjAkjFj<y
5 simp2 φykjAkjy<Fjy
6 nfv jφy
7 simp3l φyjAkjy<Fjkj
8 simp1r φyjAy<Fjy
9 8 rexrd φyjAy<Fjy*
10 3 ffvelcdmda φjAFj*
11 10 adantlr φyjAFj*
12 11 3adant3 φyjAy<FjFj*
13 simp3 φyjAy<Fjy<Fj
14 9 12 13 xrltled φyjAy<FjyFj
15 14 3adant3l φyjAkjy<FjyFj
16 7 15 jca φyjAkjy<FjkjyFj
17 16 3exp φyjAkjy<FjkjyFj
18 6 17 reximdai φyjAkjy<FjjAkjyFj
19 18 ralimdv φykjAkjy<FjkjAkjyFj
20 19 3impia φykjAkjy<FjkjAkjyFj
21 breq1 x=yxFjyFj
22 21 anbi2d x=ykjxFjkjyFj
23 22 rexbidv x=yjAkjxFjjAkjyFj
24 23 ralbidv x=ykjAkjxFjkjAkjyFj
25 24 rspcev ykjAkjyFjxkjAkjxFj
26 5 20 25 syl2anc φykjAkjy<FjxkjAkjxFj
27 26 3exp φykjAkjy<FjxkjAkjxFj
28 27 rexlimdv φykjAkjy<FjxkjAkjxFj
29 peano2rem xx1
30 29 ad2antlr φxkjAkjxFjx1
31 nfv jφx
32 simp3l φxjAkjxFjkj
33 simp1r φxjAkjxFjx
34 29 rexrd xx1*
35 33 34 syl φxjAkjxFjx1*
36 33 rexrd φxjAkjxFjx*
37 10 adantlr φxjAFj*
38 37 3adant3 φxjAkjxFjFj*
39 33 ltm1d φxjAkjxFjx1<x
40 simp3r φxjAkjxFjxFj
41 35 36 38 39 40 xrltletrd φxjAkjxFjx1<Fj
42 32 41 jca φxjAkjxFjkjx1<Fj
43 42 3exp φxjAkjxFjkjx1<Fj
44 31 43 reximdai φxjAkjxFjjAkjx1<Fj
45 44 ralimdv φxkjAkjxFjkjAkjx1<Fj
46 45 imp φxkjAkjxFjkjAkjx1<Fj
47 breq1 y=x1y<Fjx1<Fj
48 47 anbi2d y=x1kjy<Fjkjx1<Fj
49 48 rexbidv y=x1jAkjy<FjjAkjx1<Fj
50 49 ralbidv y=x1kjAkjy<FjkjAkjx1<Fj
51 50 rspcev x1kjAkjx1<FjykjAkjy<Fj
52 30 46 51 syl2anc φxkjAkjxFjykjAkjy<Fj
53 52 rexlimdva2 φxkjAkjxFjykjAkjy<Fj
54 28 53 impbid φykjAkjy<FjxkjAkjxFj
55 simplr φykjAkjFj<yy
56 11 adantr φyjAFj<yFj*
57 rexr yy*
58 57 ad3antlr φyjAFj<yy*
59 simpr φyjAFj<yFj<y
60 56 58 59 xrltled φyjAFj<yFjy
61 60 ex φyjAFj<yFjy
62 61 imim2d φyjAkjFj<ykjFjy
63 62 ralimdva φyjAkjFj<yjAkjFjy
64 63 reximdv φykjAkjFj<ykjAkjFjy
65 64 imp φykjAkjFj<ykjAkjFjy
66 breq2 x=yFjxFjy
67 66 imbi2d x=ykjFjxkjFjy
68 67 ralbidv x=yjAkjFjxjAkjFjy
69 68 rexbidv x=ykjAkjFjxkjAkjFjy
70 69 rspcev ykjAkjFjyxkjAkjFjx
71 55 65 70 syl2anc φykjAkjFj<yxkjAkjFjx
72 71 rexlimdva2 φykjAkjFj<yxkjAkjFjx
73 peano2re xx+1
74 73 ad2antlr φxkjAkjFjxx+1
75 37 adantr φxjAFjxFj*
76 rexr xx*
77 76 ad3antlr φxjAFjxx*
78 73 rexrd xx+1*
79 78 ad3antlr φxjAFjxx+1*
80 simpr φxjAFjxFjx
81 ltp1 xx<x+1
82 81 ad3antlr φxjAFjxx<x+1
83 75 77 79 80 82 xrlelttrd φxjAFjxFj<x+1
84 83 ex φxjAFjxFj<x+1
85 84 imim2d φxjAkjFjxkjFj<x+1
86 85 ralimdva φxjAkjFjxjAkjFj<x+1
87 86 reximdv φxkjAkjFjxkjAkjFj<x+1
88 87 imp φxkjAkjFjxkjAkjFj<x+1
89 breq2 y=x+1Fj<yFj<x+1
90 89 imbi2d y=x+1kjFj<ykjFj<x+1
91 90 ralbidv y=x+1jAkjFj<yjAkjFj<x+1
92 91 rexbidv y=x+1kjAkjFj<ykjAkjFj<x+1
93 92 rspcev x+1kjAkjFj<x+1ykjAkjFj<y
94 74 88 93 syl2anc φxkjAkjFjxykjAkjFj<y
95 94 rexlimdva2 φxkjAkjFjxykjAkjFj<y
96 72 95 impbid φykjAkjFj<yxkjAkjFjx
97 54 96 anbi12d φykjAkjy<FjykjAkjFj<yxkjAkjxFjxkjAkjFjx
98 4 97 bitrd φlim supFxkjAkjxFjxkjAkjFjx