Metamath Proof Explorer


Theorem lincreslvec3

Description: Property 3 of a specially modified restriction of a linear combination in a vector space. (Contributed by AV, 18-May-2019) (Proof shortened by AV, 30-Jul-2019)

Ref Expression
Hypotheses lincresunit.b B=BaseM
lincresunit.r R=ScalarM
lincresunit.e E=BaseR
lincresunit.u U=UnitR
lincresunit.0 0˙=0R
lincresunit.z Z=0M
lincresunit.n N=invgR
lincresunit.i I=invrR
lincresunit.t ·˙=R
lincresunit.g G=sSXINFX·˙Fs
Assertion lincreslvec3 S𝒫BMLVecXSFESFX0˙finSupp0˙FFlinCMS=ZGlinCMSX=X

Proof

Step Hyp Ref Expression
1 lincresunit.b B=BaseM
2 lincresunit.r R=ScalarM
3 lincresunit.e E=BaseR
4 lincresunit.u U=UnitR
5 lincresunit.0 0˙=0R
6 lincresunit.z Z=0M
7 lincresunit.n N=invgR
8 lincresunit.i I=invrR
9 lincresunit.t ·˙=R
10 lincresunit.g G=sSXINFX·˙Fs
11 lveclmod MLVecMLMod
12 11 3anim2i S𝒫BMLVecXSS𝒫BMLModXS
13 12 3ad2ant1 S𝒫BMLVecXSFESFX0˙finSupp0˙FFlinCMS=ZS𝒫BMLModXS
14 simp21 S𝒫BMLVecXSFESFX0˙finSupp0˙FFlinCMS=ZFES
15 elmapi FESF:SE
16 15 3ad2ant1 FESFX0˙finSupp0˙FF:SE
17 simp3 S𝒫BMLVecXSXS
18 ffvelcdm F:SEXSFXE
19 16 17 18 syl2anr S𝒫BMLVecXSFESFX0˙finSupp0˙FFXE
20 simpr2 S𝒫BMLVecXSFESFX0˙finSupp0˙FFX0˙
21 2 lvecdrng MLVecRDivRing
22 21 3ad2ant2 S𝒫BMLVecXSRDivRing
23 22 adantr S𝒫BMLVecXSFESFX0˙finSupp0˙FRDivRing
24 3 4 5 drngunit RDivRingFXUFXEFX0˙
25 23 24 syl S𝒫BMLVecXSFESFX0˙finSupp0˙FFXUFXEFX0˙
26 19 20 25 mpbir2and S𝒫BMLVecXSFESFX0˙finSupp0˙FFXU
27 26 3adant3 S𝒫BMLVecXSFESFX0˙finSupp0˙FFlinCMS=ZFXU
28 simp3 FESFX0˙finSupp0˙FfinSupp0˙F
29 28 3ad2ant2 S𝒫BMLVecXSFESFX0˙finSupp0˙FFlinCMS=ZfinSupp0˙F
30 simp3 S𝒫BMLVecXSFESFX0˙finSupp0˙FFlinCMS=ZFlinCMS=Z
31 1 2 3 4 5 6 7 8 9 10 lincresunit3 S𝒫BMLModXSFESFXUfinSupp0˙FFlinCMS=ZGlinCMSX=X
32 13 14 27 29 30 31 syl131anc S𝒫BMLVecXSFESFX0˙finSupp0˙FFlinCMS=ZGlinCMSX=X