Metamath Proof Explorer


Theorem lindfind

Description: A linearly independent family is independent: no nonzero element multiple can be expressed as a linear combination of the others. (Contributed by Stefan O'Rear, 24-Feb-2015)

Ref Expression
Hypotheses lindfind.s ·˙=W
lindfind.n N=LSpanW
lindfind.l L=ScalarW
lindfind.z 0˙=0L
lindfind.k K=BaseL
Assertion lindfind FLIndFWEdomFAKA0˙¬A·˙FENFdomFE

Proof

Step Hyp Ref Expression
1 lindfind.s ·˙=W
2 lindfind.n N=LSpanW
3 lindfind.l L=ScalarW
4 lindfind.z 0˙=0L
5 lindfind.k K=BaseL
6 simplr FLIndFWEdomFAKA0˙EdomF
7 eldifsn AK0˙AKA0˙
8 7 biimpri AKA0˙AK0˙
9 8 adantl FLIndFWEdomFAKA0˙AK0˙
10 simpll FLIndFWEdomFAKA0˙FLIndFW
11 3 5 elbasfv AKWV
12 11 ad2antrl FLIndFWEdomFAKA0˙WV
13 rellindf RelLIndF
14 13 brrelex1i FLIndFWFV
15 14 ad2antrr FLIndFWEdomFAKA0˙FV
16 eqid BaseW=BaseW
17 16 1 2 3 5 4 islindf WVFVFLIndFWF:domFBaseWedomFaK0˙¬a·˙FeNFdomFe
18 12 15 17 syl2anc FLIndFWEdomFAKA0˙FLIndFWF:domFBaseWedomFaK0˙¬a·˙FeNFdomFe
19 10 18 mpbid FLIndFWEdomFAKA0˙F:domFBaseWedomFaK0˙¬a·˙FeNFdomFe
20 19 simprd FLIndFWEdomFAKA0˙edomFaK0˙¬a·˙FeNFdomFe
21 fveq2 e=EFe=FE
22 21 oveq2d e=Ea·˙Fe=a·˙FE
23 sneq e=Ee=E
24 23 difeq2d e=EdomFe=domFE
25 24 imaeq2d e=EFdomFe=FdomFE
26 25 fveq2d e=ENFdomFe=NFdomFE
27 22 26 eleq12d e=Ea·˙FeNFdomFea·˙FENFdomFE
28 27 notbid e=E¬a·˙FeNFdomFe¬a·˙FENFdomFE
29 oveq1 a=Aa·˙FE=A·˙FE
30 29 eleq1d a=Aa·˙FENFdomFEA·˙FENFdomFE
31 30 notbid a=A¬a·˙FENFdomFE¬A·˙FENFdomFE
32 28 31 rspc2va EdomFAK0˙edomFaK0˙¬a·˙FeNFdomFe¬A·˙FENFdomFE
33 6 9 20 32 syl21anc FLIndFWEdomFAKA0˙¬A·˙FENFdomFE