Description: A linearly independent family is independent: no nonzero element multiple can be expressed as a linear combination of the others. (Contributed by Stefan O'Rear, 24-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lindfind.s | |
|
lindfind.n | |
||
lindfind.l | |
||
lindfind.z | |
||
lindfind.k | |
||
Assertion | lindfind | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lindfind.s | |
|
2 | lindfind.n | |
|
3 | lindfind.l | |
|
4 | lindfind.z | |
|
5 | lindfind.k | |
|
6 | simplr | |
|
7 | eldifsn | |
|
8 | 7 | biimpri | |
9 | 8 | adantl | |
10 | simpll | |
|
11 | 3 5 | elbasfv | |
12 | 11 | ad2antrl | |
13 | rellindf | |
|
14 | 13 | brrelex1i | |
15 | 14 | ad2antrr | |
16 | eqid | |
|
17 | 16 1 2 3 5 4 | islindf | |
18 | 12 15 17 | syl2anc | |
19 | 10 18 | mpbid | |
20 | 19 | simprd | |
21 | fveq2 | |
|
22 | 21 | oveq2d | |
23 | sneq | |
|
24 | 23 | difeq2d | |
25 | 24 | imaeq2d | |
26 | 25 | fveq2d | |
27 | 22 26 | eleq12d | |
28 | 27 | notbid | |
29 | oveq1 | |
|
30 | 29 | eleq1d | |
31 | 30 | notbid | |
32 | 28 31 | rspc2va | |
33 | 6 9 20 32 | syl21anc | |