Metamath Proof Explorer


Theorem linethru

Description: If A is a line containing two distinct points P and Q , then A is the line through P and Q . Theorem 6.18 of Schwabhauser p. 45. (Contributed by Scott Fenton, 28-Oct-2013) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion linethru ALinesEEPAQAPQA=PLineQ

Proof

Step Hyp Ref Expression
1 ellines ALinesEEna𝔼nb𝔼nabA=aLineb
2 simpll1 na𝔼nb𝔼nabPaLinebQaLinebPQn
3 simpll2 na𝔼nb𝔼nabPaLinebQaLinebPQa𝔼n
4 simpll3 na𝔼nb𝔼nabPaLinebQaLinebPQb𝔼n
5 simplr na𝔼nb𝔼nabPaLinebQaLinebPQab
6 liness na𝔼nb𝔼nabaLineb𝔼n
7 2 3 4 5 6 syl13anc na𝔼nb𝔼nabPaLinebQaLinebPQaLineb𝔼n
8 simprll na𝔼nb𝔼nabPaLinebQaLinebPQPaLineb
9 7 8 sseldd na𝔼nb𝔼nabPaLinebQaLinebPQP𝔼n
10 simprlr na𝔼nb𝔼nabPaLinebQaLinebPQQaLineb
11 7 10 sseldd na𝔼nb𝔼nabPaLinebQaLinebPQQ𝔼n
12 simplll PaLinebQaLinebPaP𝔼nQ𝔼nPaLineb
13 12 adantl na𝔼nb𝔼nabPaLinebQaLinebPaP𝔼nQ𝔼nPaLineb
14 simpll1 na𝔼nb𝔼nabPaLinebQaLinebPaP𝔼nQ𝔼nn
15 simpll2 na𝔼nb𝔼nabPaLinebQaLinebPaP𝔼nQ𝔼na𝔼n
16 simpll3 na𝔼nb𝔼nabPaLinebQaLinebPaP𝔼nQ𝔼nb𝔼n
17 simplr na𝔼nb𝔼nabPaLinebQaLinebPaP𝔼nQ𝔼nab
18 simprrl na𝔼nb𝔼nabPaLinebQaLinebPaP𝔼nQ𝔼nP𝔼n
19 simprlr na𝔼nb𝔼nabPaLinebQaLinebPaP𝔼nQ𝔼nPa
20 19 necomd na𝔼nb𝔼nabPaLinebQaLinebPaP𝔼nQ𝔼naP
21 lineelsb2 na𝔼nb𝔼nabP𝔼naPPaLinebaLineb=aLineP
22 14 15 16 17 18 20 21 syl132anc na𝔼nb𝔼nabPaLinebQaLinebPaP𝔼nQ𝔼nPaLinebaLineb=aLineP
23 13 22 mpd na𝔼nb𝔼nabPaLinebQaLinebPaP𝔼nQ𝔼naLineb=aLineP
24 linecom na𝔼nP𝔼naPaLineP=PLinea
25 14 15 18 20 24 syl13anc na𝔼nb𝔼nabPaLinebQaLinebPaP𝔼nQ𝔼naLineP=PLinea
26 23 25 eqtrd na𝔼nb𝔼nabPaLinebQaLinebPaP𝔼nQ𝔼naLineb=PLinea
27 neeq2 Q=aPQPa
28 27 anbi2d Q=aPaLinebQaLinebPQPaLinebQaLinebPa
29 28 anbi1d Q=aPaLinebQaLinebPQP𝔼nQ𝔼nPaLinebQaLinebPaP𝔼nQ𝔼n
30 29 anbi2d Q=ana𝔼nb𝔼nabPaLinebQaLinebPQP𝔼nQ𝔼nna𝔼nb𝔼nabPaLinebQaLinebPaP𝔼nQ𝔼n
31 oveq2 Q=aPLineQ=PLinea
32 31 eqeq2d Q=aaLineb=PLineQaLineb=PLinea
33 30 32 imbi12d Q=ana𝔼nb𝔼nabPaLinebQaLinebPQP𝔼nQ𝔼naLineb=PLineQna𝔼nb𝔼nabPaLinebQaLinebPaP𝔼nQ𝔼naLineb=PLinea
34 26 33 mpbiri Q=ana𝔼nb𝔼nabPaLinebQaLinebPQP𝔼nQ𝔼naLineb=PLineQ
35 simp1 na𝔼nb𝔼nabPaLinebQaLinebPQP𝔼nQ𝔼nQana𝔼nb𝔼nab
36 simp2l na𝔼nb𝔼nabPaLinebQaLinebPQP𝔼nQ𝔼nQaPaLinebQaLinebPQ
37 35 36 10 syl2anc na𝔼nb𝔼nabPaLinebQaLinebPQP𝔼nQ𝔼nQaQaLineb
38 simp1l1 na𝔼nb𝔼nabPaLinebQaLinebPQP𝔼nQ𝔼nQan
39 simp1l2 na𝔼nb𝔼nabPaLinebQaLinebPQP𝔼nQ𝔼nQaa𝔼n
40 simp1l3 na𝔼nb𝔼nabPaLinebQaLinebPQP𝔼nQ𝔼nQab𝔼n
41 simp1r na𝔼nb𝔼nabPaLinebQaLinebPQP𝔼nQ𝔼nQaab
42 simp2rr na𝔼nb𝔼nabPaLinebQaLinebPQP𝔼nQ𝔼nQaQ𝔼n
43 simp3 na𝔼nb𝔼nabPaLinebQaLinebPQP𝔼nQ𝔼nQaQa
44 43 necomd na𝔼nb𝔼nabPaLinebQaLinebPQP𝔼nQ𝔼nQaaQ
45 lineelsb2 na𝔼nb𝔼nabQ𝔼naQQaLinebaLineb=aLineQ
46 38 39 40 41 42 44 45 syl132anc na𝔼nb𝔼nabPaLinebQaLinebPQP𝔼nQ𝔼nQaQaLinebaLineb=aLineQ
47 37 46 mpd na𝔼nb𝔼nabPaLinebQaLinebPQP𝔼nQ𝔼nQaaLineb=aLineQ
48 linecom na𝔼nQ𝔼naQaLineQ=QLinea
49 38 39 42 44 48 syl13anc na𝔼nb𝔼nabPaLinebQaLinebPQP𝔼nQ𝔼nQaaLineQ=QLinea
50 47 49 eqtrd na𝔼nb𝔼nabPaLinebQaLinebPQP𝔼nQ𝔼nQaaLineb=QLinea
51 36 simplld na𝔼nb𝔼nabPaLinebQaLinebPQP𝔼nQ𝔼nQaPaLineb
52 51 50 eleqtrd na𝔼nb𝔼nabPaLinebQaLinebPQP𝔼nQ𝔼nQaPQLinea
53 simp2rl na𝔼nb𝔼nabPaLinebQaLinebPQP𝔼nQ𝔼nQaP𝔼n
54 simp2lr na𝔼nb𝔼nabPaLinebQaLinebPQP𝔼nQ𝔼nQaPQ
55 54 necomd na𝔼nb𝔼nabPaLinebQaLinebPQP𝔼nQ𝔼nQaQP
56 lineelsb2 nQ𝔼na𝔼nQaP𝔼nQPPQLineaQLinea=QLineP
57 38 42 39 43 53 55 56 syl132anc na𝔼nb𝔼nabPaLinebQaLinebPQP𝔼nQ𝔼nQaPQLineaQLinea=QLineP
58 52 57 mpd na𝔼nb𝔼nabPaLinebQaLinebPQP𝔼nQ𝔼nQaQLinea=QLineP
59 linecom nQ𝔼nP𝔼nQPQLineP=PLineQ
60 38 42 53 55 59 syl13anc na𝔼nb𝔼nabPaLinebQaLinebPQP𝔼nQ𝔼nQaQLineP=PLineQ
61 50 58 60 3eqtrd na𝔼nb𝔼nabPaLinebQaLinebPQP𝔼nQ𝔼nQaaLineb=PLineQ
62 61 3expa na𝔼nb𝔼nabPaLinebQaLinebPQP𝔼nQ𝔼nQaaLineb=PLineQ
63 62 expcom Qana𝔼nb𝔼nabPaLinebQaLinebPQP𝔼nQ𝔼naLineb=PLineQ
64 34 63 pm2.61ine na𝔼nb𝔼nabPaLinebQaLinebPQP𝔼nQ𝔼naLineb=PLineQ
65 64 expr na𝔼nb𝔼nabPaLinebQaLinebPQP𝔼nQ𝔼naLineb=PLineQ
66 9 11 65 mp2and na𝔼nb𝔼nabPaLinebQaLinebPQaLineb=PLineQ
67 66 ex na𝔼nb𝔼nabPaLinebQaLinebPQaLineb=PLineQ
68 eleq2 A=aLinebPAPaLineb
69 eleq2 A=aLinebQAQaLineb
70 68 69 anbi12d A=aLinebPAQAPaLinebQaLineb
71 70 anbi1d A=aLinebPAQAPQPaLinebQaLinebPQ
72 eqeq1 A=aLinebA=PLineQaLineb=PLineQ
73 71 72 imbi12d A=aLinebPAQAPQA=PLineQPaLinebQaLinebPQaLineb=PLineQ
74 67 73 syl5ibrcom na𝔼nb𝔼nabA=aLinebPAQAPQA=PLineQ
75 74 expimpd na𝔼nb𝔼nabA=aLinebPAQAPQA=PLineQ
76 75 3expa na𝔼nb𝔼nabA=aLinebPAQAPQA=PLineQ
77 76 rexlimdva na𝔼nb𝔼nabA=aLinebPAQAPQA=PLineQ
78 77 rexlimivv na𝔼nb𝔼nabA=aLinebPAQAPQA=PLineQ
79 1 78 sylbi ALinesEEPAQAPQA=PLineQ
80 79 3impib ALinesEEPAQAPQA=PLineQ