Step |
Hyp |
Ref |
Expression |
1 |
|
ellines |
|
2 |
|
simpll1 |
|
3 |
|
simpll2 |
|
4 |
|
simpll3 |
|
5 |
|
simplr |
|
6 |
|
liness |
|
7 |
2 3 4 5 6
|
syl13anc |
|
8 |
|
simprll |
|
9 |
7 8
|
sseldd |
|
10 |
|
simprlr |
|
11 |
7 10
|
sseldd |
|
12 |
|
simplll |
|
13 |
12
|
adantl |
|
14 |
|
simpll1 |
|
15 |
|
simpll2 |
|
16 |
|
simpll3 |
|
17 |
|
simplr |
|
18 |
|
simprrl |
|
19 |
|
simprlr |
|
20 |
19
|
necomd |
|
21 |
|
lineelsb2 |
|
22 |
14 15 16 17 18 20 21
|
syl132anc |
|
23 |
13 22
|
mpd |
|
24 |
|
linecom |
|
25 |
14 15 18 20 24
|
syl13anc |
|
26 |
23 25
|
eqtrd |
|
27 |
|
neeq2 |
|
28 |
27
|
anbi2d |
|
29 |
28
|
anbi1d |
|
30 |
29
|
anbi2d |
|
31 |
|
oveq2 |
|
32 |
31
|
eqeq2d |
|
33 |
30 32
|
imbi12d |
|
34 |
26 33
|
mpbiri |
|
35 |
|
simp1 |
|
36 |
|
simp2l |
|
37 |
35 36 10
|
syl2anc |
|
38 |
|
simp1l1 |
|
39 |
|
simp1l2 |
|
40 |
|
simp1l3 |
|
41 |
|
simp1r |
|
42 |
|
simp2rr |
|
43 |
|
simp3 |
|
44 |
43
|
necomd |
|
45 |
|
lineelsb2 |
|
46 |
38 39 40 41 42 44 45
|
syl132anc |
|
47 |
37 46
|
mpd |
|
48 |
|
linecom |
|
49 |
38 39 42 44 48
|
syl13anc |
|
50 |
47 49
|
eqtrd |
|
51 |
36
|
simplld |
|
52 |
51 50
|
eleqtrd |
|
53 |
|
simp2rl |
|
54 |
|
simp2lr |
|
55 |
54
|
necomd |
|
56 |
|
lineelsb2 |
|
57 |
38 42 39 43 53 55 56
|
syl132anc |
|
58 |
52 57
|
mpd |
|
59 |
|
linecom |
|
60 |
38 42 53 55 59
|
syl13anc |
|
61 |
50 58 60
|
3eqtrd |
|
62 |
61
|
3expa |
|
63 |
62
|
expcom |
|
64 |
34 63
|
pm2.61ine |
|
65 |
64
|
expr |
|
66 |
9 11 65
|
mp2and |
|
67 |
66
|
ex |
|
68 |
|
eleq2 |
|
69 |
|
eleq2 |
|
70 |
68 69
|
anbi12d |
|
71 |
70
|
anbi1d |
|
72 |
|
eqeq1 |
|
73 |
71 72
|
imbi12d |
|
74 |
67 73
|
syl5ibrcom |
|
75 |
74
|
expimpd |
|
76 |
75
|
3expa |
|
77 |
76
|
rexlimdva |
|
78 |
77
|
rexlimivv |
|
79 |
1 78
|
sylbi |
|
80 |
79
|
3impib |
|