Metamath Proof Explorer


Theorem linethru

Description: If A is a line containing two distinct points P and Q , then A is the line through P and Q . Theorem 6.18 of Schwabhauser p. 45. (Contributed by Scott Fenton, 28-Oct-2013) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion linethru A LinesEE P A Q A P Q A = P Line Q

Proof

Step Hyp Ref Expression
1 ellines A LinesEE n a 𝔼 n b 𝔼 n a b A = a Line b
2 simpll1 n a 𝔼 n b 𝔼 n a b P a Line b Q a Line b P Q n
3 simpll2 n a 𝔼 n b 𝔼 n a b P a Line b Q a Line b P Q a 𝔼 n
4 simpll3 n a 𝔼 n b 𝔼 n a b P a Line b Q a Line b P Q b 𝔼 n
5 simplr n a 𝔼 n b 𝔼 n a b P a Line b Q a Line b P Q a b
6 liness n a 𝔼 n b 𝔼 n a b a Line b 𝔼 n
7 2 3 4 5 6 syl13anc n a 𝔼 n b 𝔼 n a b P a Line b Q a Line b P Q a Line b 𝔼 n
8 simprll n a 𝔼 n b 𝔼 n a b P a Line b Q a Line b P Q P a Line b
9 7 8 sseldd n a 𝔼 n b 𝔼 n a b P a Line b Q a Line b P Q P 𝔼 n
10 simprlr n a 𝔼 n b 𝔼 n a b P a Line b Q a Line b P Q Q a Line b
11 7 10 sseldd n a 𝔼 n b 𝔼 n a b P a Line b Q a Line b P Q Q 𝔼 n
12 simplll P a Line b Q a Line b P a P 𝔼 n Q 𝔼 n P a Line b
13 12 adantl n a 𝔼 n b 𝔼 n a b P a Line b Q a Line b P a P 𝔼 n Q 𝔼 n P a Line b
14 simpll1 n a 𝔼 n b 𝔼 n a b P a Line b Q a Line b P a P 𝔼 n Q 𝔼 n n
15 simpll2 n a 𝔼 n b 𝔼 n a b P a Line b Q a Line b P a P 𝔼 n Q 𝔼 n a 𝔼 n
16 simpll3 n a 𝔼 n b 𝔼 n a b P a Line b Q a Line b P a P 𝔼 n Q 𝔼 n b 𝔼 n
17 simplr n a 𝔼 n b 𝔼 n a b P a Line b Q a Line b P a P 𝔼 n Q 𝔼 n a b
18 simprrl n a 𝔼 n b 𝔼 n a b P a Line b Q a Line b P a P 𝔼 n Q 𝔼 n P 𝔼 n
19 simprlr n a 𝔼 n b 𝔼 n a b P a Line b Q a Line b P a P 𝔼 n Q 𝔼 n P a
20 19 necomd n a 𝔼 n b 𝔼 n a b P a Line b Q a Line b P a P 𝔼 n Q 𝔼 n a P
21 lineelsb2 n a 𝔼 n b 𝔼 n a b P 𝔼 n a P P a Line b a Line b = a Line P
22 14 15 16 17 18 20 21 syl132anc n a 𝔼 n b 𝔼 n a b P a Line b Q a Line b P a P 𝔼 n Q 𝔼 n P a Line b a Line b = a Line P
23 13 22 mpd n a 𝔼 n b 𝔼 n a b P a Line b Q a Line b P a P 𝔼 n Q 𝔼 n a Line b = a Line P
24 linecom n a 𝔼 n P 𝔼 n a P a Line P = P Line a
25 14 15 18 20 24 syl13anc n a 𝔼 n b 𝔼 n a b P a Line b Q a Line b P a P 𝔼 n Q 𝔼 n a Line P = P Line a
26 23 25 eqtrd n a 𝔼 n b 𝔼 n a b P a Line b Q a Line b P a P 𝔼 n Q 𝔼 n a Line b = P Line a
27 neeq2 Q = a P Q P a
28 27 anbi2d Q = a P a Line b Q a Line b P Q P a Line b Q a Line b P a
29 28 anbi1d Q = a P a Line b Q a Line b P Q P 𝔼 n Q 𝔼 n P a Line b Q a Line b P a P 𝔼 n Q 𝔼 n
30 29 anbi2d Q = a n a 𝔼 n b 𝔼 n a b P a Line b Q a Line b P Q P 𝔼 n Q 𝔼 n n a 𝔼 n b 𝔼 n a b P a Line b Q a Line b P a P 𝔼 n Q 𝔼 n
31 oveq2 Q = a P Line Q = P Line a
32 31 eqeq2d Q = a a Line b = P Line Q a Line b = P Line a
33 30 32 imbi12d Q = a n a 𝔼 n b 𝔼 n a b P a Line b Q a Line b P Q P 𝔼 n Q 𝔼 n a Line b = P Line Q n a 𝔼 n b 𝔼 n a b P a Line b Q a Line b P a P 𝔼 n Q 𝔼 n a Line b = P Line a
34 26 33 mpbiri Q = a n a 𝔼 n b 𝔼 n a b P a Line b Q a Line b P Q P 𝔼 n Q 𝔼 n a Line b = P Line Q
35 simp1 n a 𝔼 n b 𝔼 n a b P a Line b Q a Line b P Q P 𝔼 n Q 𝔼 n Q a n a 𝔼 n b 𝔼 n a b
36 simp2l n a 𝔼 n b 𝔼 n a b P a Line b Q a Line b P Q P 𝔼 n Q 𝔼 n Q a P a Line b Q a Line b P Q
37 35 36 10 syl2anc n a 𝔼 n b 𝔼 n a b P a Line b Q a Line b P Q P 𝔼 n Q 𝔼 n Q a Q a Line b
38 simp1l1 n a 𝔼 n b 𝔼 n a b P a Line b Q a Line b P Q P 𝔼 n Q 𝔼 n Q a n
39 simp1l2 n a 𝔼 n b 𝔼 n a b P a Line b Q a Line b P Q P 𝔼 n Q 𝔼 n Q a a 𝔼 n
40 simp1l3 n a 𝔼 n b 𝔼 n a b P a Line b Q a Line b P Q P 𝔼 n Q 𝔼 n Q a b 𝔼 n
41 simp1r n a 𝔼 n b 𝔼 n a b P a Line b Q a Line b P Q P 𝔼 n Q 𝔼 n Q a a b
42 simp2rr n a 𝔼 n b 𝔼 n a b P a Line b Q a Line b P Q P 𝔼 n Q 𝔼 n Q a Q 𝔼 n
43 simp3 n a 𝔼 n b 𝔼 n a b P a Line b Q a Line b P Q P 𝔼 n Q 𝔼 n Q a Q a
44 43 necomd n a 𝔼 n b 𝔼 n a b P a Line b Q a Line b P Q P 𝔼 n Q 𝔼 n Q a a Q
45 lineelsb2 n a 𝔼 n b 𝔼 n a b Q 𝔼 n a Q Q a Line b a Line b = a Line Q
46 38 39 40 41 42 44 45 syl132anc n a 𝔼 n b 𝔼 n a b P a Line b Q a Line b P Q P 𝔼 n Q 𝔼 n Q a Q a Line b a Line b = a Line Q
47 37 46 mpd n a 𝔼 n b 𝔼 n a b P a Line b Q a Line b P Q P 𝔼 n Q 𝔼 n Q a a Line b = a Line Q
48 linecom n a 𝔼 n Q 𝔼 n a Q a Line Q = Q Line a
49 38 39 42 44 48 syl13anc n a 𝔼 n b 𝔼 n a b P a Line b Q a Line b P Q P 𝔼 n Q 𝔼 n Q a a Line Q = Q Line a
50 47 49 eqtrd n a 𝔼 n b 𝔼 n a b P a Line b Q a Line b P Q P 𝔼 n Q 𝔼 n Q a a Line b = Q Line a
51 36 simplld n a 𝔼 n b 𝔼 n a b P a Line b Q a Line b P Q P 𝔼 n Q 𝔼 n Q a P a Line b
52 51 50 eleqtrd n a 𝔼 n b 𝔼 n a b P a Line b Q a Line b P Q P 𝔼 n Q 𝔼 n Q a P Q Line a
53 simp2rl n a 𝔼 n b 𝔼 n a b P a Line b Q a Line b P Q P 𝔼 n Q 𝔼 n Q a P 𝔼 n
54 simp2lr n a 𝔼 n b 𝔼 n a b P a Line b Q a Line b P Q P 𝔼 n Q 𝔼 n Q a P Q
55 54 necomd n a 𝔼 n b 𝔼 n a b P a Line b Q a Line b P Q P 𝔼 n Q 𝔼 n Q a Q P
56 lineelsb2 n Q 𝔼 n a 𝔼 n Q a P 𝔼 n Q P P Q Line a Q Line a = Q Line P
57 38 42 39 43 53 55 56 syl132anc n a 𝔼 n b 𝔼 n a b P a Line b Q a Line b P Q P 𝔼 n Q 𝔼 n Q a P Q Line a Q Line a = Q Line P
58 52 57 mpd n a 𝔼 n b 𝔼 n a b P a Line b Q a Line b P Q P 𝔼 n Q 𝔼 n Q a Q Line a = Q Line P
59 linecom n Q 𝔼 n P 𝔼 n Q P Q Line P = P Line Q
60 38 42 53 55 59 syl13anc n a 𝔼 n b 𝔼 n a b P a Line b Q a Line b P Q P 𝔼 n Q 𝔼 n Q a Q Line P = P Line Q
61 50 58 60 3eqtrd n a 𝔼 n b 𝔼 n a b P a Line b Q a Line b P Q P 𝔼 n Q 𝔼 n Q a a Line b = P Line Q
62 61 3expa n a 𝔼 n b 𝔼 n a b P a Line b Q a Line b P Q P 𝔼 n Q 𝔼 n Q a a Line b = P Line Q
63 62 expcom Q a n a 𝔼 n b 𝔼 n a b P a Line b Q a Line b P Q P 𝔼 n Q 𝔼 n a Line b = P Line Q
64 34 63 pm2.61ine n a 𝔼 n b 𝔼 n a b P a Line b Q a Line b P Q P 𝔼 n Q 𝔼 n a Line b = P Line Q
65 64 expr n a 𝔼 n b 𝔼 n a b P a Line b Q a Line b P Q P 𝔼 n Q 𝔼 n a Line b = P Line Q
66 9 11 65 mp2and n a 𝔼 n b 𝔼 n a b P a Line b Q a Line b P Q a Line b = P Line Q
67 66 ex n a 𝔼 n b 𝔼 n a b P a Line b Q a Line b P Q a Line b = P Line Q
68 eleq2 A = a Line b P A P a Line b
69 eleq2 A = a Line b Q A Q a Line b
70 68 69 anbi12d A = a Line b P A Q A P a Line b Q a Line b
71 70 anbi1d A = a Line b P A Q A P Q P a Line b Q a Line b P Q
72 eqeq1 A = a Line b A = P Line Q a Line b = P Line Q
73 71 72 imbi12d A = a Line b P A Q A P Q A = P Line Q P a Line b Q a Line b P Q a Line b = P Line Q
74 67 73 syl5ibrcom n a 𝔼 n b 𝔼 n a b A = a Line b P A Q A P Q A = P Line Q
75 74 expimpd n a 𝔼 n b 𝔼 n a b A = a Line b P A Q A P Q A = P Line Q
76 75 3expa n a 𝔼 n b 𝔼 n a b A = a Line b P A Q A P Q A = P Line Q
77 76 rexlimdva n a 𝔼 n b 𝔼 n a b A = a Line b P A Q A P Q A = P Line Q
78 77 rexlimivv n a 𝔼 n b 𝔼 n a b A = a Line b P A Q A P Q A = P Line Q
79 1 78 sylbi A LinesEE P A Q A P Q A = P Line Q
80 79 3impib A LinesEE P A Q A P Q A = P Line Q