Metamath Proof Explorer


Theorem lkrshp

Description: The kernel of a nonzero functional is a hyperplane. (Contributed by NM, 29-Jun-2014)

Ref Expression
Hypotheses lkrshp.v V=BaseW
lkrshp.d D=ScalarW
lkrshp.z 0˙=0D
lkrshp.h H=LSHypW
lkrshp.f F=LFnlW
lkrshp.k K=LKerW
Assertion lkrshp WLVecGFGV×0˙KGH

Proof

Step Hyp Ref Expression
1 lkrshp.v V=BaseW
2 lkrshp.d D=ScalarW
3 lkrshp.z 0˙=0D
4 lkrshp.h H=LSHypW
5 lkrshp.f F=LFnlW
6 lkrshp.k K=LKerW
7 lveclmod WLVecWLMod
8 7 3ad2ant1 WLVecGFGV×0˙WLMod
9 simp2 WLVecGFGV×0˙GF
10 eqid LSubSpW=LSubSpW
11 5 6 10 lkrlss WLModGFKGLSubSpW
12 8 9 11 syl2anc WLVecGFGV×0˙KGLSubSpW
13 simp3 WLVecGFGV×0˙GV×0˙
14 2 3 1 5 6 lkr0f WLModGFKG=VG=V×0˙
15 8 9 14 syl2anc WLVecGFGV×0˙KG=VG=V×0˙
16 15 necon3bid WLVecGFGV×0˙KGVGV×0˙
17 13 16 mpbird WLVecGFGV×0˙KGV
18 eqid 1D=1D
19 2 3 18 1 5 lfl1 WLVecGFGV×0˙vVGv=1D
20 simp11 WLVecGFGV×0˙vVGv=1DWLVec
21 simp2 WLVecGFGV×0˙vVGv=1DvV
22 simp12 WLVecGFGV×0˙vVGv=1DGF
23 simp3 WLVecGFGV×0˙vVGv=1DGv=1D
24 2 lvecdrng WLVecDDivRing
25 3 18 drngunz DDivRing1D0˙
26 20 24 25 3syl WLVecGFGV×0˙vVGv=1D1D0˙
27 23 26 eqnetrd WLVecGFGV×0˙vVGv=1DGv0˙
28 simpl11 WLVecGFGV×0˙vVGv=1DvKGWLVec
29 simpl12 WLVecGFGV×0˙vVGv=1DvKGGF
30 simpr WLVecGFGV×0˙vVGv=1DvKGvKG
31 2 3 5 6 lkrf0 WLVecGFvKGGv=0˙
32 28 29 30 31 syl3anc WLVecGFGV×0˙vVGv=1DvKGGv=0˙
33 32 ex WLVecGFGV×0˙vVGv=1DvKGGv=0˙
34 33 necon3ad WLVecGFGV×0˙vVGv=1DGv0˙¬vKG
35 27 34 mpd WLVecGFGV×0˙vVGv=1D¬vKG
36 eqid LSpanW=LSpanW
37 1 36 5 6 lkrlsp3 WLVecvVGF¬vKGLSpanWKGv=V
38 20 21 22 35 37 syl121anc WLVecGFGV×0˙vVGv=1DLSpanWKGv=V
39 38 3expia WLVecGFGV×0˙vVGv=1DLSpanWKGv=V
40 39 reximdva WLVecGFGV×0˙vVGv=1DvVLSpanWKGv=V
41 19 40 mpd WLVecGFGV×0˙vVLSpanWKGv=V
42 1 36 10 4 islshp WLVecKGHKGLSubSpWKGVvVLSpanWKGv=V
43 42 3ad2ant1 WLVecGFGV×0˙KGHKGLSubSpWKGVvVLSpanWKGv=V
44 12 17 41 43 mpbir3and WLVecGFGV×0˙KGH