Metamath Proof Explorer


Theorem lkrss2N

Description: Two functionals with kernels in a subset relationship. (Contributed by NM, 17-Feb-2015) (New usage is discouraged.)

Ref Expression
Hypotheses lkrss2.s S=ScalarW
lkrss2.r R=BaseS
lkrss2.f F=LFnlW
lkrss2.k K=LKerW
lkrss2.d D=LDualW
lkrss2.t ·˙=D
lkrss2.w φWLVec
lkrss2.g φGF
lkrss2.h φHF
Assertion lkrss2N φKGKHrRH=r·˙G

Proof

Step Hyp Ref Expression
1 lkrss2.s S=ScalarW
2 lkrss2.r R=BaseS
3 lkrss2.f F=LFnlW
4 lkrss2.k K=LKerW
5 lkrss2.d D=LDualW
6 lkrss2.t ·˙=D
7 lkrss2.w φWLVec
8 lkrss2.g φGF
9 lkrss2.h φHF
10 sspss KGKHKGKHKG=KH
11 eqid 0D=0D
12 3 4 5 11 7 8 9 lkrpssN φKGKHG0DH=0D
13 lveclmod WLVecWLMod
14 7 13 syl φWLMod
15 eqid 0S=0S
16 1 2 15 lmod0cl WLMod0SR
17 14 16 syl φ0SR
18 17 adantr φH=0D0SR
19 simpr φH=0DH=0D
20 3 1 15 5 6 11 14 8 ldual0vs φ0S·˙G=0D
21 20 adantr φH=0D0S·˙G=0D
22 19 21 eqtr4d φH=0DH=0S·˙G
23 oveq1 r=0Sr·˙G=0S·˙G
24 23 rspceeqv 0SRH=0S·˙GrRH=r·˙G
25 18 22 24 syl2anc φH=0DrRH=r·˙G
26 25 ex φH=0DrRH=r·˙G
27 26 adantld φG0DH=0DrRH=r·˙G
28 12 27 sylbid φKGKHrRH=r·˙G
29 28 imp φKGKHrRH=r·˙G
30 7 adantr φKG=KHWLVec
31 8 adantr φKG=KHGF
32 9 adantr φKG=KHHF
33 simpr φKG=KHKG=KH
34 1 2 3 4 5 6 30 31 32 33 eqlkr4 φKG=KHrRH=r·˙G
35 29 34 jaodan φKGKHKG=KHrRH=r·˙G
36 10 35 sylan2b φKGKHrRH=r·˙G
37 7 adantr φrRWLVec
38 8 adantr φrRGF
39 simpr φrRrR
40 1 2 3 4 5 6 37 38 39 lkrss φrRKGKr·˙G
41 40 ex φrRKGKr·˙G
42 fveq2 H=r·˙GKH=Kr·˙G
43 42 sseq2d H=r·˙GKGKHKGKr·˙G
44 43 biimprcd KGKr·˙GH=r·˙GKGKH
45 41 44 syl6 φrRH=r·˙GKGKH
46 45 rexlimdv φrRH=r·˙GKGKH
47 46 imp φrRH=r·˙GKGKH
48 36 47 impbida φKGKHrRH=r·˙G