Metamath Proof Explorer


Theorem lnrfg

Description: Finitely-generated modules over a Noetherian ring, being homomorphic images of free modules, are Noetherian. (Contributed by Stefan O'Rear, 7-Feb-2015)

Ref Expression
Hypothesis lnrfg.s S = Scalar M
Assertion lnrfg M LFinGen S LNoeR M LNoeM

Proof

Step Hyp Ref Expression
1 lnrfg.s S = Scalar M
2 eqid S freeLMod a = S freeLMod a
3 eqid Base S freeLMod a = Base S freeLMod a
4 eqid Base M = Base M
5 eqid M = M
6 eqid b Base S freeLMod a M b M f I a = b Base S freeLMod a M b M f I a
7 fglmod M LFinGen M LMod
8 7 ad3antrrr M LFinGen S LNoeR a 𝒫 Base M a Fin LSpan M a = Base M M LMod
9 vex a V
10 9 a1i M LFinGen S LNoeR a 𝒫 Base M a Fin LSpan M a = Base M a V
11 1 a1i M LFinGen S LNoeR a 𝒫 Base M a Fin LSpan M a = Base M S = Scalar M
12 f1oi I a : a 1-1 onto a
13 f1of I a : a 1-1 onto a I a : a a
14 12 13 ax-mp I a : a a
15 elpwi a 𝒫 Base M a Base M
16 fss I a : a a a Base M I a : a Base M
17 14 15 16 sylancr a 𝒫 Base M I a : a Base M
18 17 ad2antlr M LFinGen S LNoeR a 𝒫 Base M a Fin LSpan M a = Base M I a : a Base M
19 2 3 4 5 6 8 10 11 18 frlmup1 M LFinGen S LNoeR a 𝒫 Base M a Fin LSpan M a = Base M b Base S freeLMod a M b M f I a S freeLMod a LMHom M
20 simpllr M LFinGen S LNoeR a 𝒫 Base M a Fin LSpan M a = Base M S LNoeR
21 simprl M LFinGen S LNoeR a 𝒫 Base M a Fin LSpan M a = Base M a Fin
22 2 lnrfrlm S LNoeR a Fin S freeLMod a LNoeM
23 20 21 22 syl2anc M LFinGen S LNoeR a 𝒫 Base M a Fin LSpan M a = Base M S freeLMod a LNoeM
24 eqid LSpan M = LSpan M
25 2 3 4 5 6 8 10 11 18 24 frlmup3 M LFinGen S LNoeR a 𝒫 Base M a Fin LSpan M a = Base M ran b Base S freeLMod a M b M f I a = LSpan M ran I a
26 rnresi ran I a = a
27 26 fveq2i LSpan M ran I a = LSpan M a
28 simprr M LFinGen S LNoeR a 𝒫 Base M a Fin LSpan M a = Base M LSpan M a = Base M
29 27 28 eqtrid M LFinGen S LNoeR a 𝒫 Base M a Fin LSpan M a = Base M LSpan M ran I a = Base M
30 25 29 eqtrd M LFinGen S LNoeR a 𝒫 Base M a Fin LSpan M a = Base M ran b Base S freeLMod a M b M f I a = Base M
31 4 lnmepi b Base S freeLMod a M b M f I a S freeLMod a LMHom M S freeLMod a LNoeM ran b Base S freeLMod a M b M f I a = Base M M LNoeM
32 19 23 30 31 syl3anc M LFinGen S LNoeR a 𝒫 Base M a Fin LSpan M a = Base M M LNoeM
33 4 24 islmodfg M LMod M LFinGen a 𝒫 Base M a Fin LSpan M a = Base M
34 7 33 syl M LFinGen M LFinGen a 𝒫 Base M a Fin LSpan M a = Base M
35 34 ibi M LFinGen a 𝒫 Base M a Fin LSpan M a = Base M
36 35 adantr M LFinGen S LNoeR a 𝒫 Base M a Fin LSpan M a = Base M
37 32 36 r19.29a M LFinGen S LNoeR M LNoeM