Metamath Proof Explorer


Theorem lnrfg

Description: Finitely-generated modules over a Noetherian ring, being homomorphic images of free modules, are Noetherian. (Contributed by Stefan O'Rear, 7-Feb-2015)

Ref Expression
Hypothesis lnrfg.s S=ScalarM
Assertion lnrfg MLFinGenSLNoeRMLNoeM

Proof

Step Hyp Ref Expression
1 lnrfg.s S=ScalarM
2 eqid SfreeLModa=SfreeLModa
3 eqid BaseSfreeLModa=BaseSfreeLModa
4 eqid BaseM=BaseM
5 eqid M=M
6 eqid bBaseSfreeLModaMbMfIa=bBaseSfreeLModaMbMfIa
7 fglmod MLFinGenMLMod
8 7 ad3antrrr MLFinGenSLNoeRa𝒫BaseMaFinLSpanMa=BaseMMLMod
9 vex aV
10 9 a1i MLFinGenSLNoeRa𝒫BaseMaFinLSpanMa=BaseMaV
11 1 a1i MLFinGenSLNoeRa𝒫BaseMaFinLSpanMa=BaseMS=ScalarM
12 f1oi Ia:a1-1 ontoa
13 f1of Ia:a1-1 ontoaIa:aa
14 12 13 ax-mp Ia:aa
15 elpwi a𝒫BaseMaBaseM
16 fss Ia:aaaBaseMIa:aBaseM
17 14 15 16 sylancr a𝒫BaseMIa:aBaseM
18 17 ad2antlr MLFinGenSLNoeRa𝒫BaseMaFinLSpanMa=BaseMIa:aBaseM
19 2 3 4 5 6 8 10 11 18 frlmup1 MLFinGenSLNoeRa𝒫BaseMaFinLSpanMa=BaseMbBaseSfreeLModaMbMfIaSfreeLModaLMHomM
20 simpllr MLFinGenSLNoeRa𝒫BaseMaFinLSpanMa=BaseMSLNoeR
21 simprl MLFinGenSLNoeRa𝒫BaseMaFinLSpanMa=BaseMaFin
22 2 lnrfrlm SLNoeRaFinSfreeLModaLNoeM
23 20 21 22 syl2anc MLFinGenSLNoeRa𝒫BaseMaFinLSpanMa=BaseMSfreeLModaLNoeM
24 eqid LSpanM=LSpanM
25 2 3 4 5 6 8 10 11 18 24 frlmup3 MLFinGenSLNoeRa𝒫BaseMaFinLSpanMa=BaseMranbBaseSfreeLModaMbMfIa=LSpanMranIa
26 rnresi ranIa=a
27 26 fveq2i LSpanMranIa=LSpanMa
28 simprr MLFinGenSLNoeRa𝒫BaseMaFinLSpanMa=BaseMLSpanMa=BaseM
29 27 28 eqtrid MLFinGenSLNoeRa𝒫BaseMaFinLSpanMa=BaseMLSpanMranIa=BaseM
30 25 29 eqtrd MLFinGenSLNoeRa𝒫BaseMaFinLSpanMa=BaseMranbBaseSfreeLModaMbMfIa=BaseM
31 4 lnmepi bBaseSfreeLModaMbMfIaSfreeLModaLMHomMSfreeLModaLNoeMranbBaseSfreeLModaMbMfIa=BaseMMLNoeM
32 19 23 30 31 syl3anc MLFinGenSLNoeRa𝒫BaseMaFinLSpanMa=BaseMMLNoeM
33 4 24 islmodfg MLModMLFinGena𝒫BaseMaFinLSpanMa=BaseM
34 7 33 syl MLFinGenMLFinGena𝒫BaseMaFinLSpanMa=BaseM
35 34 ibi MLFinGena𝒫BaseMaFinLSpanMa=BaseM
36 35 adantr MLFinGenSLNoeRa𝒫BaseMaFinLSpanMa=BaseM
37 32 36 r19.29a MLFinGenSLNoeRMLNoeM