Description: Finitely-generated modules over a Noetherian ring, being homomorphic images of free modules, are Noetherian. (Contributed by Stefan O'Rear, 7-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | lnrfg.s | |
|
Assertion | lnrfg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lnrfg.s | |
|
2 | eqid | |
|
3 | eqid | |
|
4 | eqid | |
|
5 | eqid | |
|
6 | eqid | |
|
7 | fglmod | |
|
8 | 7 | ad3antrrr | |
9 | vex | |
|
10 | 9 | a1i | |
11 | 1 | a1i | |
12 | f1oi | |
|
13 | f1of | |
|
14 | 12 13 | ax-mp | |
15 | elpwi | |
|
16 | fss | |
|
17 | 14 15 16 | sylancr | |
18 | 17 | ad2antlr | |
19 | 2 3 4 5 6 8 10 11 18 | frlmup1 | |
20 | simpllr | |
|
21 | simprl | |
|
22 | 2 | lnrfrlm | |
23 | 20 21 22 | syl2anc | |
24 | eqid | |
|
25 | 2 3 4 5 6 8 10 11 18 24 | frlmup3 | |
26 | rnresi | |
|
27 | 26 | fveq2i | |
28 | simprr | |
|
29 | 27 28 | eqtrid | |
30 | 25 29 | eqtrd | |
31 | 4 | lnmepi | |
32 | 19 23 30 31 | syl3anc | |
33 | 4 24 | islmodfg | |
34 | 7 33 | syl | |
35 | 34 | ibi | |
36 | 35 | adantr | |
37 | 32 36 | r19.29a | |