Metamath Proof Explorer


Theorem logbrec

Description: Logarithm of a reciprocal changes sign. See logrec . Particular case of Property 3 of Cohen4 p. 361. (Contributed by Thierry Arnoux, 27-Sep-2017)

Ref Expression
Assertion logbrec B 2 A + log B 1 A = log B A

Proof

Step Hyp Ref Expression
1 simpr B 2 A + A +
2 1 rpreccld B 2 A + 1 A +
3 relogbval B 2 1 A + log B 1 A = log 1 A log B
4 2 3 syldan B 2 A + log B 1 A = log 1 A log B
5 relogbval B 2 A + log B A = log A log B
6 5 negeqd B 2 A + log B A = log A log B
7 1 rpcnd B 2 A + A
8 1 rpne0d B 2 A + A 0
9 7 8 logcld B 2 A + log A
10 zgt1rpn0n1 B 2 B + B 0 B 1
11 10 simp1d B 2 B +
12 11 adantr B 2 A + B +
13 12 relogcld B 2 A + log B
14 13 recnd B 2 A + log B
15 10 simp3d B 2 B 1
16 15 adantr B 2 A + B 1
17 logne0 B + B 1 log B 0
18 12 16 17 syl2anc B 2 A + log B 0
19 9 14 18 divnegd B 2 A + log A log B = log A log B
20 7 8 reccld B 2 A + 1 A
21 7 8 recne0d B 2 A + 1 A 0
22 20 21 logcld B 2 A + log 1 A
23 1 relogcld B 2 A + log A
24 23 reim0d B 2 A + log A = 0
25 0re 0
26 pipos 0 < π
27 25 26 gtneii π 0
28 27 a1i B 2 A + π 0
29 28 necomd B 2 A + 0 π
30 24 29 eqnetrd B 2 A + log A π
31 logrec A A 0 log A π log A = log 1 A
32 7 8 30 31 syl3anc B 2 A + log A = log 1 A
33 32 eqcomd B 2 A + log 1 A = log A
34 22 33 negcon1ad B 2 A + log A = log 1 A
35 34 oveq1d B 2 A + log A log B = log 1 A log B
36 6 19 35 3eqtrd B 2 A + log B A = log 1 A log B
37 4 36 eqtr4d B 2 A + log B 1 A = log B A