Metamath Proof Explorer


Theorem logdiflbnd

Description: Lower bound on the difference of logs. (Contributed by Mario Carneiro, 3-Jul-2017)

Ref Expression
Assertion logdiflbnd A+1A+1logA+1logA

Proof

Step Hyp Ref Expression
1 rpre A+A
2 rpge0 A+0A
3 1 2 ge0p1rpd A+A+1+
4 3 rprecred A+1A+1
5 1red A+1
6 0le1 01
7 6 a1i A+01
8 5 3 7 divge0d A+01A+1
9 id A+A+
10 5 9 ltaddrp2d A+1<A+1
11 1 5 readdcld A+A+1
12 11 recnd A+A+1
13 12 mulridd A+A+11=A+1
14 10 13 breqtrrd A+1<A+11
15 5 5 3 ltdivmuld A+1A+1<11<A+11
16 14 15 mpbird A+1A+1<1
17 4 8 16 eflegeo A+e1A+1111A+1
18 5 recnd A+1
19 3 rpne0d A+A+10
20 12 18 12 19 divsubdird A+A+1-1A+1=A+1A+11A+1
21 1 recnd A+A
22 21 18 pncand A+A+1-1=A
23 22 oveq1d A+A+1-1A+1=AA+1
24 12 19 dividd A+A+1A+1=1
25 24 oveq1d A+A+1A+11A+1=11A+1
26 20 23 25 3eqtr3rd A+11A+1=AA+1
27 26 oveq2d A+111A+1=1AA+1
28 rpne0 A+A0
29 21 12 28 19 recdivd A+1AA+1=A+1A
30 27 29 eqtrd A+111A+1=A+1A
31 17 30 breqtrd A+e1A+1A+1A
32 4 rpefcld A+e1A+1+
33 3 9 rpdivcld A+A+1A+
34 32 33 logled A+e1A+1A+1Aloge1A+1logA+1A
35 31 34 mpbid A+loge1A+1logA+1A
36 4 relogefd A+loge1A+1=1A+1
37 3 9 relogdivd A+logA+1A=logA+1logA
38 35 36 37 3brtr3d A+1A+1logA+1logA