Metamath Proof Explorer


Theorem lsatcv1

Description: Two atoms covering the zero subspace are equal. ( atcv1 analog.) (Contributed by NM, 10-Jan-2015)

Ref Expression
Hypotheses lsatcv1.o 0˙=0W
lsatcv1.p ˙=LSSumW
lsatcv1.s S=LSubSpW
lsatcv1.a A=LSAtomsW
lsatcv1.c C=LW
lsatcv1.w φWLVec
lsatcv1.u φUS
lsatcv1.q φQA
lsatcv1.r φRA
lsatcv1.l φUCQ˙R
Assertion lsatcv1 φU=0˙Q=R

Proof

Step Hyp Ref Expression
1 lsatcv1.o 0˙=0W
2 lsatcv1.p ˙=LSSumW
3 lsatcv1.s S=LSubSpW
4 lsatcv1.a A=LSAtomsW
5 lsatcv1.c C=LW
6 lsatcv1.w φWLVec
7 lsatcv1.u φUS
8 lsatcv1.q φQA
9 lsatcv1.r φRA
10 lsatcv1.l φUCQ˙R
11 breq1 U=0˙UCQ˙R0˙CQ˙R
12 10 11 syl5ibcom φU=0˙0˙CQ˙R
13 1 2 4 5 6 8 9 lsatcv0eq φ0˙CQ˙RQ=R
14 12 13 sylibd φU=0˙Q=R
15 10 adantr φQ=RUCQ˙R
16 6 adantr φQ=RWLVec
17 7 adantr φQ=RUS
18 oveq1 Q=RQ˙R=R˙R
19 lveclmod WLVecWLMod
20 6 19 syl φWLMod
21 3 4 20 9 lsatlssel φRS
22 3 lsssubg WLModRSRSubGrpW
23 20 21 22 syl2anc φRSubGrpW
24 2 lsmidm RSubGrpWR˙R=R
25 23 24 syl φR˙R=R
26 18 25 sylan9eqr φQ=RQ˙R=R
27 9 adantr φQ=RRA
28 26 27 eqeltrd φQ=RQ˙RA
29 1 3 4 5 16 17 28 lsatcveq0 φQ=RUCQ˙RU=0˙
30 15 29 mpbid φQ=RU=0˙
31 30 ex φQ=RU=0˙
32 14 31 impbid φU=0˙Q=R