Description: Group sum is associative, subset version (see lsmass ). (Contributed by Thierry Arnoux, 1-Jun-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lsmssass.p | |
|
lsmssass.b | |
||
lsmssass.g | |
||
lsmssass.r | |
||
lsmssass.t | |
||
lsmssass.u | |
||
Assertion | lsmssass | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsmssass.p | |
|
2 | lsmssass.b | |
|
3 | lsmssass.g | |
|
4 | lsmssass.r | |
|
5 | lsmssass.t | |
|
6 | lsmssass.u | |
|
7 | eqid | |
|
8 | 2 7 1 | lsmvalx | |
9 | 3 4 5 8 | syl3anc | |
10 | 9 | rexeqdv | |
11 | ovex | |
|
12 | 11 | rgen2w | |
13 | eqid | |
|
14 | oveq1 | |
|
15 | 14 | eqeq2d | |
16 | 15 | rexbidv | |
17 | 13 16 | rexrnmpo | |
18 | 12 17 | ax-mp | |
19 | 10 18 | bitrdi | |
20 | 2 7 1 | lsmvalx | |
21 | 3 5 6 20 | syl3anc | |
22 | 21 | rexeqdv | |
23 | ovex | |
|
24 | 23 | rgen2w | |
25 | eqid | |
|
26 | oveq2 | |
|
27 | 26 | eqeq2d | |
28 | 25 27 | rexrnmpo | |
29 | 24 28 | ax-mp | |
30 | 22 29 | bitrdi | |
31 | 30 | adantr | |
32 | 3 | ad2antrr | |
33 | 4 | ad2antrr | |
34 | simplr | |
|
35 | 33 34 | sseldd | |
36 | 5 | ad2antrr | |
37 | simprl | |
|
38 | 36 37 | sseldd | |
39 | 6 | ad2antrr | |
40 | simprr | |
|
41 | 39 40 | sseldd | |
42 | 2 7 | mndass | |
43 | 32 35 38 41 42 | syl13anc | |
44 | 43 | eqeq2d | |
45 | 44 | 2rexbidva | |
46 | 31 45 | bitr4d | |
47 | 46 | rexbidva | |
48 | 19 47 | bitr4d | |
49 | 2 1 | lsmssv | |
50 | 3 4 5 49 | syl3anc | |
51 | 2 7 1 | lsmelvalx | |
52 | 3 50 6 51 | syl3anc | |
53 | 2 1 | lsmssv | |
54 | 3 5 6 53 | syl3anc | |
55 | 2 7 1 | lsmelvalx | |
56 | 3 4 54 55 | syl3anc | |
57 | 48 52 56 | 3bitr4d | |
58 | 57 | eqrdv | |