Metamath Proof Explorer


Theorem lspsn

Description: Span of the singleton of a vector. (Contributed by NM, 14-Jan-2014) (Proof shortened by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lspsn.f F=ScalarW
lspsn.k K=BaseF
lspsn.v V=BaseW
lspsn.t ·˙=W
lspsn.n N=LSpanW
Assertion lspsn WLModXVNX=v|kKv=k·˙X

Proof

Step Hyp Ref Expression
1 lspsn.f F=ScalarW
2 lspsn.k K=BaseF
3 lspsn.v V=BaseW
4 lspsn.t ·˙=W
5 lspsn.n N=LSpanW
6 eqid LSubSpW=LSubSpW
7 simpl WLModXVWLMod
8 3 1 4 2 6 lss1d WLModXVv|kKv=k·˙XLSubSpW
9 eqid 1F=1F
10 1 2 9 lmod1cl WLMod1FK
11 3 1 4 9 lmodvs1 WLModXV1F·˙X=X
12 11 eqcomd WLModXVX=1F·˙X
13 oveq1 k=1Fk·˙X=1F·˙X
14 13 rspceeqv 1FKX=1F·˙XkKX=k·˙X
15 10 12 14 syl2an2r WLModXVkKX=k·˙X
16 eqeq1 v=Xv=k·˙XX=k·˙X
17 16 rexbidv v=XkKv=k·˙XkKX=k·˙X
18 17 elabg XVXv|kKv=k·˙XkKX=k·˙X
19 18 adantl WLModXVXv|kKv=k·˙XkKX=k·˙X
20 15 19 mpbird WLModXVXv|kKv=k·˙X
21 6 5 7 8 20 lspsnel5a WLModXVNXv|kKv=k·˙X
22 7 adantr WLModXVkKWLMod
23 3 6 5 lspsncl WLModXVNXLSubSpW
24 23 adantr WLModXVkKNXLSubSpW
25 simpr WLModXVkKkK
26 3 5 lspsnid WLModXVXNX
27 26 adantr WLModXVkKXNX
28 1 4 2 6 lssvscl WLModNXLSubSpWkKXNXk·˙XNX
29 22 24 25 27 28 syl22anc WLModXVkKk·˙XNX
30 eleq1a k·˙XNXv=k·˙XvNX
31 29 30 syl WLModXVkKv=k·˙XvNX
32 31 rexlimdva WLModXVkKv=k·˙XvNX
33 32 abssdv WLModXVv|kKv=k·˙XNX
34 21 33 eqssd WLModXVNX=v|kKv=k·˙X