Description: There is no subspace strictly between the zero subspace and the span of a vector (i.e. a 1-dimensional subspace is an atom). ( h1datomi analog.) (Contributed by NM, 20-Apr-2014) (Proof shortened by Mario Carneiro, 22-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lspsnat.v | |
|
lspsnat.z | |
||
lspsnat.s | |
||
lspsnat.n | |
||
Assertion | lspsnat | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspsnat.v | |
|
2 | lspsnat.z | |
|
3 | lspsnat.s | |
|
4 | lspsnat.n | |
|
5 | n0 | |
|
6 | simprl | |
|
7 | simpl1 | |
|
8 | lveclmod | |
|
9 | 7 8 | syl | |
10 | simpl2 | |
|
11 | simprr | |
|
12 | 11 | eldifad | |
13 | 3 4 9 10 12 | lspsnel5a | |
14 | 0ss | |
|
15 | 14 | a1i | |
16 | simpl3 | |
|
17 | ssdif | |
|
18 | 17 | ad2antrl | |
19 | 18 11 | sseldd | |
20 | uncom | |
|
21 | un0 | |
|
22 | 20 21 | eqtri | |
23 | 22 | fveq2i | |
24 | 23 | a1i | |
25 | 2 4 | lsp0 | |
26 | 9 25 | syl | |
27 | 24 26 | difeq12d | |
28 | 19 27 | eleqtrrd | |
29 | 1 3 4 | lspsolv | |
30 | 7 15 16 28 29 | syl13anc | |
31 | uncom | |
|
32 | un0 | |
|
33 | 31 32 | eqtri | |
34 | 33 | fveq2i | |
35 | 30 34 | eleqtrdi | |
36 | 13 35 | sseldd | |
37 | 3 4 9 10 36 | lspsnel5a | |
38 | 6 37 | eqssd | |
39 | 38 | expr | |
40 | 39 | exlimdv | |
41 | 5 40 | biimtrid | |
42 | 41 | necon1bd | |
43 | ssdif0 | |
|
44 | 42 43 | imbitrrdi | |
45 | simpl1 | |
|
46 | 45 8 | syl | |
47 | simpl2 | |
|
48 | 2 3 | lssle0 | |
49 | 46 47 48 | syl2anc | |
50 | 44 49 | sylibd | |
51 | 50 | orrd | |