| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lspsnat.v |  | 
						
							| 2 |  | lspsnat.z |  | 
						
							| 3 |  | lspsnat.s |  | 
						
							| 4 |  | lspsnat.n |  | 
						
							| 5 |  | n0 |  | 
						
							| 6 |  | simprl |  | 
						
							| 7 |  | simpl1 |  | 
						
							| 8 |  | lveclmod |  | 
						
							| 9 | 7 8 | syl |  | 
						
							| 10 |  | simpl2 |  | 
						
							| 11 |  | simprr |  | 
						
							| 12 | 11 | eldifad |  | 
						
							| 13 | 3 4 9 10 12 | ellspsn5 |  | 
						
							| 14 |  | 0ss |  | 
						
							| 15 | 14 | a1i |  | 
						
							| 16 |  | simpl3 |  | 
						
							| 17 |  | ssdif |  | 
						
							| 18 | 17 | ad2antrl |  | 
						
							| 19 | 18 11 | sseldd |  | 
						
							| 20 |  | uncom |  | 
						
							| 21 |  | un0 |  | 
						
							| 22 | 20 21 | eqtri |  | 
						
							| 23 | 22 | fveq2i |  | 
						
							| 24 | 23 | a1i |  | 
						
							| 25 | 2 4 | lsp0 |  | 
						
							| 26 | 9 25 | syl |  | 
						
							| 27 | 24 26 | difeq12d |  | 
						
							| 28 | 19 27 | eleqtrrd |  | 
						
							| 29 | 1 3 4 | lspsolv |  | 
						
							| 30 | 7 15 16 28 29 | syl13anc |  | 
						
							| 31 |  | uncom |  | 
						
							| 32 |  | un0 |  | 
						
							| 33 | 31 32 | eqtri |  | 
						
							| 34 | 33 | fveq2i |  | 
						
							| 35 | 30 34 | eleqtrdi |  | 
						
							| 36 | 13 35 | sseldd |  | 
						
							| 37 | 3 4 9 10 36 | ellspsn5 |  | 
						
							| 38 | 6 37 | eqssd |  | 
						
							| 39 | 38 | expr |  | 
						
							| 40 | 39 | exlimdv |  | 
						
							| 41 | 5 40 | biimtrid |  | 
						
							| 42 | 41 | necon1bd |  | 
						
							| 43 |  | ssdif0 |  | 
						
							| 44 | 42 43 | imbitrrdi |  | 
						
							| 45 |  | simpl1 |  | 
						
							| 46 | 45 8 | syl |  | 
						
							| 47 |  | simpl2 |  | 
						
							| 48 | 2 3 | lssle0 |  | 
						
							| 49 | 46 47 48 | syl2anc |  | 
						
							| 50 | 44 49 | sylibd |  | 
						
							| 51 | 50 | orrd |  |