Metamath Proof Explorer


Theorem lssatle

Description: The ordering of two subspaces is determined by the atoms under them. ( chrelat3 analog.) (Contributed by NM, 29-Oct-2014)

Ref Expression
Hypotheses lssatle.s S = LSubSp W
lssatle.a A = LSAtoms W
lssatle.w φ W LMod
lssatle.t φ T S
lssatle.u φ U S
Assertion lssatle φ T U p A p T p U

Proof

Step Hyp Ref Expression
1 lssatle.s S = LSubSp W
2 lssatle.a A = LSAtoms W
3 lssatle.w φ W LMod
4 lssatle.t φ T S
5 lssatle.u φ U S
6 sstr p T T U p U
7 6 expcom T U p T p U
8 7 ralrimivw T U p A p T p U
9 ss2rab p A | p T p A | p U p A p T p U
10 1 2 lsatlss W LMod A S
11 rabss2 A S p A | p U p S | p U
12 uniss p A | p U p S | p U p A | p U p S | p U
13 3 10 11 12 4syl φ p A | p U p S | p U
14 unimax U S p S | p U = U
15 5 14 syl φ p S | p U = U
16 eqid Base W = Base W
17 16 1 lssss U S U Base W
18 5 17 syl φ U Base W
19 15 18 eqsstrd φ p S | p U Base W
20 13 19 sstrd φ p A | p U Base W
21 uniss p A | p T p A | p U p A | p T p A | p U
22 eqid LSpan W = LSpan W
23 16 22 lspss W LMod p A | p U Base W p A | p T p A | p U LSpan W p A | p T LSpan W p A | p U
24 3 20 21 23 syl2an3an φ p A | p T p A | p U LSpan W p A | p T LSpan W p A | p U
25 24 ex φ p A | p T p A | p U LSpan W p A | p T LSpan W p A | p U
26 1 22 2 lssats W LMod T S T = LSpan W p A | p T
27 3 4 26 syl2anc φ T = LSpan W p A | p T
28 1 22 2 lssats W LMod U S U = LSpan W p A | p U
29 3 5 28 syl2anc φ U = LSpan W p A | p U
30 27 29 sseq12d φ T U LSpan W p A | p T LSpan W p A | p U
31 25 30 sylibrd φ p A | p T p A | p U T U
32 9 31 biimtrrid φ p A p T p U T U
33 8 32 impbid2 φ T U p A p T p U