Metamath Proof Explorer


Theorem lssintcl

Description: The intersection of a nonempty set of subspaces is a subspace. (Contributed by NM, 8-Dec-2013) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypothesis lssintcl.s S=LSubSpW
Assertion lssintcl WLModASAAS

Proof

Step Hyp Ref Expression
1 lssintcl.s S=LSubSpW
2 eqidd WLModASAScalarW=ScalarW
3 eqidd WLModASABaseScalarW=BaseScalarW
4 eqidd WLModASABaseW=BaseW
5 eqidd WLModASA+W=+W
6 eqidd WLModASAW=W
7 1 a1i WLModASAS=LSubSpW
8 intssuni2 ASAAS
9 8 3adant1 WLModASAAS
10 eqid BaseW=BaseW
11 10 1 lssss ySyBaseW
12 velpw y𝒫BaseWyBaseW
13 11 12 sylibr ySy𝒫BaseW
14 13 ssriv S𝒫BaseW
15 sspwuni S𝒫BaseWSBaseW
16 14 15 mpbi SBaseW
17 9 16 sstrdi WLModASAABaseW
18 simpl1 WLModASAyAWLMod
19 simp2 WLModASAAS
20 19 sselda WLModASAyAyS
21 eqid 0W=0W
22 21 1 lss0cl WLModyS0Wy
23 18 20 22 syl2anc WLModASAyA0Wy
24 23 ralrimiva WLModASAyA0Wy
25 fvex 0WV
26 25 elint2 0WAyA0Wy
27 24 26 sylibr WLModASA0WA
28 27 ne0d WLModASAA
29 20 adantlr WLModASAxBaseScalarWaAbAyAyS
30 simplr1 WLModASAxBaseScalarWaAbAyAxBaseScalarW
31 simplr2 WLModASAxBaseScalarWaAbAyAaA
32 simpr WLModASAxBaseScalarWaAbAyAyA
33 elinti aAyAay
34 31 32 33 sylc WLModASAxBaseScalarWaAbAyAay
35 simplr3 WLModASAxBaseScalarWaAbAyAbA
36 elinti bAyAby
37 35 32 36 sylc WLModASAxBaseScalarWaAbAyAby
38 eqid ScalarW=ScalarW
39 eqid BaseScalarW=BaseScalarW
40 eqid +W=+W
41 eqid W=W
42 38 39 40 41 1 lsscl ySxBaseScalarWaybyxWa+Wby
43 29 30 34 37 42 syl13anc WLModASAxBaseScalarWaAbAyAxWa+Wby
44 43 ralrimiva WLModASAxBaseScalarWaAbAyAxWa+Wby
45 ovex xWa+WbV
46 45 elint2 xWa+WbAyAxWa+Wby
47 44 46 sylibr WLModASAxBaseScalarWaAbAxWa+WbA
48 2 3 4 5 6 7 17 28 47 islssd WLModASAAS