Description: The intersection of a nonempty set of subspaces is a subspace. (Contributed by NM, 8-Dec-2013) (Revised by Mario Carneiro, 19-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | lssintcl.s | |
|
Assertion | lssintcl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lssintcl.s | |
|
2 | eqidd | |
|
3 | eqidd | |
|
4 | eqidd | |
|
5 | eqidd | |
|
6 | eqidd | |
|
7 | 1 | a1i | |
8 | intssuni2 | |
|
9 | 8 | 3adant1 | |
10 | eqid | |
|
11 | 10 1 | lssss | |
12 | velpw | |
|
13 | 11 12 | sylibr | |
14 | 13 | ssriv | |
15 | sspwuni | |
|
16 | 14 15 | mpbi | |
17 | 9 16 | sstrdi | |
18 | simpl1 | |
|
19 | simp2 | |
|
20 | 19 | sselda | |
21 | eqid | |
|
22 | 21 1 | lss0cl | |
23 | 18 20 22 | syl2anc | |
24 | 23 | ralrimiva | |
25 | fvex | |
|
26 | 25 | elint2 | |
27 | 24 26 | sylibr | |
28 | 27 | ne0d | |
29 | 20 | adantlr | |
30 | simplr1 | |
|
31 | simplr2 | |
|
32 | simpr | |
|
33 | elinti | |
|
34 | 31 32 33 | sylc | |
35 | simplr3 | |
|
36 | elinti | |
|
37 | 35 32 36 | sylc | |
38 | eqid | |
|
39 | eqid | |
|
40 | eqid | |
|
41 | eqid | |
|
42 | 38 39 40 41 1 | lsscl | |
43 | 29 30 34 37 42 | syl13anc | |
44 | 43 | ralrimiva | |
45 | ovex | |
|
46 | 45 | elint2 | |
47 | 44 46 | sylibr | |
48 | 2 3 4 5 6 7 17 28 47 | islssd | |