Description: A vector space of dimension zero is reduced to its identity element, biconditional version. (Contributed by Thierry Arnoux, 31-Jul-2023)
Ref | Expression | ||
---|---|---|---|
Hypothesis | lvecdim0.1 | |
|
Assertion | lvecdim0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lvecdim0.1 | |
|
2 | 1 | lvecdim0i | |
3 | simpl | |
|
4 | eqid | |
|
5 | 4 | lbsex | |
6 | n0 | |
|
7 | 5 6 | sylib | |
8 | 3 7 | syl | |
9 | 1 | fvexi | |
10 | 9 | snid | |
11 | simpr | |
|
12 | 10 11 | eleqtrrid | |
13 | simplll | |
|
14 | 4 | lbslinds | |
15 | simplr | |
|
16 | 14 15 | sselid | |
17 | 1 | 0nellinds | |
18 | 13 16 17 | syl2anc | |
19 | 12 18 | pm2.65da | |
20 | simpr | |
|
21 | eqid | |
|
22 | 21 4 | lbsss | |
23 | 20 22 | syl | |
24 | simplr | |
|
25 | 23 24 | sseqtrd | |
26 | sssn | |
|
27 | 25 26 | sylib | |
28 | 27 | orcomd | |
29 | 28 | ord | |
30 | 19 29 | mpd | |
31 | 30 20 | eqeltrrd | |
32 | 8 31 | exlimddv | |
33 | 4 | dimval | |
34 | 3 32 33 | syl2anc | |
35 | hash0 | |
|
36 | 34 35 | eqtrdi | |
37 | 2 36 | impbida | |