Metamath Proof Explorer


Theorem madess

Description: If ordinal A is less than or equal to ordinal B , then the made set of A is included in the made set of B . (Contributed by Scott Fenton, 7-Aug-2024)

Ref Expression
Assertion madess A On B On A B M A M B

Proof

Step Hyp Ref Expression
1 imass2 A B M A M B
2 1 3ad2ant3 A On B On A B M A M B
3 2 adantr A On B On A B x No M A M B
4 3 unissd A On B On A B x No M A M B
5 4 sspwd A On B On A B x No 𝒫 M A 𝒫 M B
6 ssrexv 𝒫 M A 𝒫 M B l 𝒫 M A r 𝒫 M A l s r l | s r = x l 𝒫 M B r 𝒫 M A l s r l | s r = x
7 5 6 syl A On B On A B x No l 𝒫 M A r 𝒫 M A l s r l | s r = x l 𝒫 M B r 𝒫 M A l s r l | s r = x
8 ssrexv 𝒫 M A 𝒫 M B r 𝒫 M A l s r l | s r = x r 𝒫 M B l s r l | s r = x
9 5 8 syl A On B On A B x No r 𝒫 M A l s r l | s r = x r 𝒫 M B l s r l | s r = x
10 9 reximdv A On B On A B x No l 𝒫 M B r 𝒫 M A l s r l | s r = x l 𝒫 M B r 𝒫 M B l s r l | s r = x
11 7 10 syld A On B On A B x No l 𝒫 M A r 𝒫 M A l s r l | s r = x l 𝒫 M B r 𝒫 M B l s r l | s r = x
12 11 ralrimiva A On B On A B x No l 𝒫 M A r 𝒫 M A l s r l | s r = x l 𝒫 M B r 𝒫 M B l s r l | s r = x
13 ss2rab x No | l 𝒫 M A r 𝒫 M A l s r l | s r = x x No | l 𝒫 M B r 𝒫 M B l s r l | s r = x x No l 𝒫 M A r 𝒫 M A l s r l | s r = x l 𝒫 M B r 𝒫 M B l s r l | s r = x
14 12 13 sylibr A On B On A B x No | l 𝒫 M A r 𝒫 M A l s r l | s r = x x No | l 𝒫 M B r 𝒫 M B l s r l | s r = x
15 madeval2 A On M A = x No | l 𝒫 M A r 𝒫 M A l s r l | s r = x
16 15 3ad2ant1 A On B On A B M A = x No | l 𝒫 M A r 𝒫 M A l s r l | s r = x
17 madeval2 B On M B = x No | l 𝒫 M B r 𝒫 M B l s r l | s r = x
18 17 3ad2ant2 A On B On A B M B = x No | l 𝒫 M B r 𝒫 M B l s r l | s r = x
19 14 16 18 3sstr4d A On B On A B M A M B