Metamath Proof Explorer


Theorem mapdfval

Description: Projectivity from vector space H to dual space. (Contributed by NM, 25-Jan-2015)

Ref Expression
Hypotheses mapdval.h H=LHypK
mapdval.u U=DVecHKW
mapdval.s S=LSubSpU
mapdval.f F=LFnlU
mapdval.l L=LKerU
mapdval.o O=ocHKW
mapdval.m M=mapdKW
Assertion mapdfval KXWHM=sSfF|OOLf=LfOLfs

Proof

Step Hyp Ref Expression
1 mapdval.h H=LHypK
2 mapdval.u U=DVecHKW
3 mapdval.s S=LSubSpU
4 mapdval.f F=LFnlU
5 mapdval.l L=LKerU
6 mapdval.o O=ocHKW
7 mapdval.m M=mapdKW
8 1 mapdffval KXmapdK=wHsLSubSpDVecHKwfLFnlDVecHKw|ocHKwocHKwLKerDVecHKwf=LKerDVecHKwfocHKwLKerDVecHKwfs
9 8 fveq1d KXmapdKW=wHsLSubSpDVecHKwfLFnlDVecHKw|ocHKwocHKwLKerDVecHKwf=LKerDVecHKwfocHKwLKerDVecHKwfsW
10 7 9 eqtrid KXM=wHsLSubSpDVecHKwfLFnlDVecHKw|ocHKwocHKwLKerDVecHKwf=LKerDVecHKwfocHKwLKerDVecHKwfsW
11 fveq2 w=WDVecHKw=DVecHKW
12 11 2 eqtr4di w=WDVecHKw=U
13 12 fveq2d w=WLSubSpDVecHKw=LSubSpU
14 13 3 eqtr4di w=WLSubSpDVecHKw=S
15 12 fveq2d w=WLFnlDVecHKw=LFnlU
16 15 4 eqtr4di w=WLFnlDVecHKw=F
17 fveq2 w=WocHKw=ocHKW
18 17 6 eqtr4di w=WocHKw=O
19 12 fveq2d w=WLKerDVecHKw=LKerU
20 19 5 eqtr4di w=WLKerDVecHKw=L
21 20 fveq1d w=WLKerDVecHKwf=Lf
22 18 21 fveq12d w=WocHKwLKerDVecHKwf=OLf
23 18 22 fveq12d w=WocHKwocHKwLKerDVecHKwf=OOLf
24 23 21 eqeq12d w=WocHKwocHKwLKerDVecHKwf=LKerDVecHKwfOOLf=Lf
25 22 sseq1d w=WocHKwLKerDVecHKwfsOLfs
26 24 25 anbi12d w=WocHKwocHKwLKerDVecHKwf=LKerDVecHKwfocHKwLKerDVecHKwfsOOLf=LfOLfs
27 16 26 rabeqbidv w=WfLFnlDVecHKw|ocHKwocHKwLKerDVecHKwf=LKerDVecHKwfocHKwLKerDVecHKwfs=fF|OOLf=LfOLfs
28 14 27 mpteq12dv w=WsLSubSpDVecHKwfLFnlDVecHKw|ocHKwocHKwLKerDVecHKwf=LKerDVecHKwfocHKwLKerDVecHKwfs=sSfF|OOLf=LfOLfs
29 eqid wHsLSubSpDVecHKwfLFnlDVecHKw|ocHKwocHKwLKerDVecHKwf=LKerDVecHKwfocHKwLKerDVecHKwfs=wHsLSubSpDVecHKwfLFnlDVecHKw|ocHKwocHKwLKerDVecHKwf=LKerDVecHKwfocHKwLKerDVecHKwfs
30 28 29 3 mptfvmpt WHwHsLSubSpDVecHKwfLFnlDVecHKw|ocHKwocHKwLKerDVecHKwf=LKerDVecHKwfocHKwLKerDVecHKwfsW=sSfF|OOLf=LfOLfs
31 10 30 sylan9eq KXWHM=sSfF|OOLf=LfOLfs